↓ Skip to main content

Molecular evidence of N-methyl-D-aspartate receptor hypofunction in schizophrenia

Overview of attention for article published in Molecular Psychiatry, October 2012
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (93rd percentile)
  • Good Attention Score compared to outputs of the same age and source (78th percentile)

Mentioned by

blogs
1 blog
twitter
3 X users
patent
3 patents
wikipedia
1 Wikipedia page

Citations

dimensions_citation
210 Dimensions

Readers on

mendeley
234 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Molecular evidence of N-methyl-D-aspartate receptor hypofunction in schizophrenia
Published in
Molecular Psychiatry, October 2012
DOI 10.1038/mp.2012.137
Pubmed ID
Authors

C S Weickert, S J Fung, V S Catts, P R Schofield, K M Allen, L T Moore, K A Newell, D Pellen, X-F Huang, S V Catts, T W Weickert

Abstract

Blockade of N-methyl-D-aspartate receptors (NMDARs) produces behavior in healthy people that is similar to the psychotic symptoms and cognitive deficits of schizophrenia and can exacerbate symptoms in people with schizophrenia. However, an endogenous brain disruption of NMDARs has not been clearly established in schizophrenia. We measured mRNA transcripts for five NMDAR subunit mRNAs and protein for the NR1 subunit in the dorsolateral prefrontal cortex (DLPFC) of schizophrenia and control (n=74) brains. Five NMDAR single-nucleotide polymorphisms (SNPs) previously associated with schizophrenia were tested for association with NMDAR mRNAs in postmortem brain and for association with cognitive ability in an antemortem cohort of 101 healthy controls and 48 people with schizophrenia. The NR1 subunit (mRNA and protein) and NR2C mRNA were decreased in postmortem brain from people with schizophrenia (P=0.004, P=0.01 and P=0.01, respectively). In the antemortem cohort, the minor allele of NR2B rs1805502 (T5988C) was associated with significantly lower reasoning ability in schizophrenia. In the postmortem brain, the NR2B rs1805502 (T5988C) C allele was associated with reduced expression of NR1 mRNA and protein in schizophrenia. Reduction in NR1 and NR2C in the DLPFC of people with schizophrenia may lead to altered NMDAR stoichiometry and provides compelling evidence for an endogenous NMDAR deficit in schizophrenia. Genetic variation in the NR2B gene predicts reduced levels of the obligatory NR1 subunit, suggesting a novel mechanism by which the NR2B SNP may negatively influence other NMDAR subunit expression and reasoning ability in schizophrenia.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 234 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 3 1%
United Kingdom 1 <1%
Czechia 1 <1%
Japan 1 <1%
Mexico 1 <1%
Unknown 227 97%

Demographic breakdown

Readers by professional status Count As %
Researcher 40 17%
Student > Ph. D. Student 36 15%
Student > Bachelor 34 15%
Student > Master 32 14%
Student > Doctoral Student 11 5%
Other 35 15%
Unknown 46 20%
Readers by discipline Count As %
Neuroscience 60 26%
Agricultural and Biological Sciences 55 24%
Medicine and Dentistry 21 9%
Biochemistry, Genetics and Molecular Biology 15 6%
Psychology 14 6%
Other 14 6%
Unknown 55 24%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 19. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 11 October 2022.
All research outputs
#1,966,079
of 25,654,806 outputs
Outputs from Molecular Psychiatry
#1,482
of 4,656 outputs
Outputs of similar age
#13,079
of 193,209 outputs
Outputs of similar age from Molecular Psychiatry
#8
of 38 outputs
Altmetric has tracked 25,654,806 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 92nd percentile: it's in the top 10% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 4,656 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 37.5. This one has gotten more attention than average, scoring higher than 68% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 193,209 tracked outputs that were published within six weeks on either side of this one in any source. This one has done particularly well, scoring higher than 93% of its contemporaries.
We're also able to compare this research output to 38 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 78% of its contemporaries.