↓ Skip to main content

IRES inhibition induces terminal differentiation and synchronized death in triple-negative breast cancer and glioblastoma cells

Overview of attention for article published in Tumor Biology, July 2016
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
11 Dimensions

Readers on

mendeley
40 Mendeley
Title
IRES inhibition induces terminal differentiation and synchronized death in triple-negative breast cancer and glioblastoma cells
Published in
Tumor Biology, July 2016
DOI 10.1007/s13277-016-5161-4
Pubmed ID
Authors

Christos Vaklavas, William E. Grizzle, Hyoungsoo Choi, Zheng Meng, Kurt R. Zinn, Kedar Shrestha, Scott W. Blume

Abstract

Internal ribosome entry site (IRES)-mediated translation is a specialized mode of protein synthesis which malignant cells depend on to survive adverse microenvironmental conditions. Our lab recently reported the identification of a group of compounds which selectively interfere with IRES-mediated translation, completely blocking de novo IGF1R synthesis, and differentially modulating synthesis of the two c-Myc isoforms. Here, we examine the phenotypic consequences of sustained IRES inhibition in human triple-negative breast carcinoma and glioblastoma cells. A sudden loss of viability affects the entire tumor cell population after ∼72-h continuous exposure to the lead compound. The extraordinarily steep dose-response relationship (Hill-Slope coefficients -15 to -35) and extensive physical connections established between the cells indicate that the cells respond to IRES inhibition collectively as a population rather than as individual cells. Prior to death, the treated cells exhibit prominent features of terminal differentiation, with marked gains in cytoskeletal organization, planar polarity, and formation of tight junctions or neuronal processes. In addition to IGF1R and Myc, specific changes in connexin 43, BiP, CHOP, p21, and p27 also correlate with phenotypic outcome. This unusual mode of tumor cell death is absolutely dependent on exceeding a critical threshold in cell density, suggesting that a quorum-sensing mechanism may be operative. Death of putative tumor stem cells visualized in situ helps to explain the inability of tumor cells to recover and repopulate once the compound is removed. Together, these findings support the concept that IRES-mediated translation is of fundamental importance to maintenance of the undifferentiated phenotype and survival of undifferentiated malignant cells.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 40 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 40 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 13 33%
Student > Master 5 13%
Student > Bachelor 5 13%
Student > Doctoral Student 3 8%
Other 1 3%
Other 3 8%
Unknown 10 25%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 12 30%
Medicine and Dentistry 9 23%
Agricultural and Biological Sciences 5 13%
Neuroscience 3 8%
Unknown 11 28%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 28 July 2016.
All research outputs
#20,336,031
of 22,881,154 outputs
Outputs from Tumor Biology
#1,835
of 2,623 outputs
Outputs of similar age
#319,787
of 365,298 outputs
Outputs of similar age from Tumor Biology
#60
of 94 outputs
Altmetric has tracked 22,881,154 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 2,623 research outputs from this source. They receive a mean Attention Score of 2.3. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 365,298 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 94 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.