↓ Skip to main content

Controllable fabrication of PS/Ag core-shell-shaped nanostructures

Overview of attention for article published in Discover Nano, October 2012
Altmetric Badge

Mentioned by

facebook
1 Facebook page

Citations

dimensions_citation
4 Dimensions

Readers on

mendeley
13 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Controllable fabrication of PS/Ag core-shell-shaped nanostructures
Published in
Discover Nano, October 2012
DOI 10.1186/1556-276x-7-580
Pubmed ID
Authors

Chunjing Zhang, Xianfang Zhu, Haixia Li, Imran Khan, Muhammad Imran, Lianzhou Wang, Jianjun Bao, Xuan Cheng

Abstract

In this paper, based on the previous steps, a facile in situ reduction method was developed to controllably prepare polystyrene/Ag (PS/Ag) core-shell-shaped nanostructures. The crucial procedure includes surface treatment of polystyrene core particles by cationic polyelectrolyte polyethyleneimine, in situ formation of Ag nanoparticles, and immobilization of the Ag nanoparticles onto the surface of the polystyrene colloids via functional group NH from the polyethyleneimine. The experimental parameters, such as the reaction temperature, the reaction time, and the silver precursors were optimized for improvement of dispersion and Ag coat coverage of the core-shell-shaped nanostructures. Ultimately, the optimum parameters were obtained through a series of experiments, and well-dispersed, uniformly coated PS/Ag core-shell-shaped nanostructures were successfully fabricated. The formation mechanism of the PS/Ag core-shell-shaped nanostructures was also explained.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 13 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Germany 1 8%
Unknown 12 92%

Demographic breakdown

Readers by professional status Count As %
Researcher 2 15%
Professor > Associate Professor 2 15%
Student > Master 2 15%
Student > Doctoral Student 1 8%
Professor 1 8%
Other 1 8%
Unknown 4 31%
Readers by discipline Count As %
Materials Science 3 23%
Engineering 2 15%
Chemistry 2 15%
Physics and Astronomy 1 8%
Chemical Engineering 1 8%
Other 0 0%
Unknown 4 31%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 23 October 2012.
All research outputs
#22,758,309
of 25,373,627 outputs
Outputs from Discover Nano
#798
of 1,146 outputs
Outputs of similar age
#181,499
of 202,127 outputs
Outputs of similar age from Discover Nano
#11
of 83 outputs
Altmetric has tracked 25,373,627 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,146 research outputs from this source. They receive a mean Attention Score of 3.5. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 202,127 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 83 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.