↓ Skip to main content

What Factors are Predictive of Patient-reported Outcomes? A Prospective Study of 337 Shoulder Arthroplasties

Overview of attention for article published in Clinical Orthopaedics & Related Research, July 2016
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Above-average Attention Score compared to outputs of the same age and source (61st percentile)

Mentioned by

twitter
3 X users
facebook
2 Facebook pages

Citations

dimensions_citation
90 Dimensions

Readers on

mendeley
109 Mendeley
Title
What Factors are Predictive of Patient-reported Outcomes? A Prospective Study of 337 Shoulder Arthroplasties
Published in
Clinical Orthopaedics & Related Research, July 2016
DOI 10.1007/s11999-016-4990-1
Pubmed ID
Authors

Frederick A. Matsen, Stacy M. Russ, Phuong T. Vu, Jason E. Hsu, Robert M. Lucas, Bryan A. Comstock

Abstract

Although shoulder arthroplasties generally are effective in improving patients' comfort and function, the results are variable for reasons that are not well understood. We posed two questions: (1) What factors are associated with better 2-year outcomes after shoulder arthroplasty? (2) What are the sensitivities, specificities, and positive and negative predictive values of a multivariate predictive model for better outcome? Three hundred thirty-nine patients having a shoulder arthroplasty (hemiarthroplasty, arthroplasty for cuff tear arthropathy, ream and run arthroplasty, total shoulder or reverse total shoulder arthroplasty) between August 24, 2010 and December 31, 2012 consented to participate in this prospective study. Two patients were excluded because they were missing baseline variables. Forty-three patients were missing 2-year data. Univariate and multivariate analyses determined the relationship of baseline patient, shoulder, and surgical characteristics to a "better" outcome, defined as an improvement of at least 30% of the maximal possible improvement in the Simple Shoulder Test. The results were used to develop a predictive model, the accuracy of which was tested using a 10-fold cross-validation. After controlling for potentially relevant confounding variables, the multivariate analysis showed that the factors significantly associated with better outcomes were American Society of Anesthesiologists Class I (odds ratio [OR], 1.94; 95% CI, 1.03-3.65; p = 0.041), shoulder problem not related to work (OR, 5.36; 95% CI, 2.15-13.37; p < 0.001), lower baseline Simple Shoulder Test score (OR, 1.32; 95% CI, 1.23-1.42; p < 0.001), no prior shoulder surgery (OR, 1.79; 95% CI, 1.18-2.70; p = 0.006), humeral head not superiorly displaced on the AP radiograph (OR, 2.14; 95% CI, 1.15-4.02; p = 0.017), and glenoid type other than A1 (OR, 4.47; 95% CI, 2.24-8.94; p < 0.001). Neither preoperative glenoid version nor posterior decentering of the humeral head on the glenoid were associated with the outcomes. The model predictive of a better result was driven mainly by the six factors listed above. The area under the receiver operating characteristic curve generated from the cross-validated enhanced predictive model was 0.79 (generally values of 0.7 to 0.8 are considered fair and values of 0.8 to 0.9 are considered good). The false-positive fraction and the true-positive fraction depended on the cutoff probability selected (ie, the selected probability above which the prediction would be classified as a better outcome). A cutoff probability of 0.68 yielded the best performance of the model with cross-validation predictions of better outcomes for 236 patients (80%) and worse outcomes for 58 patients (20%); sensitivity of 91% (95% CI, 88%-95%); specificity of 65% (95% CI, 53%-77%); positive predictive value of 92% (95% CI, 88%-95%); and negative predictive value of 64% (95% CI, 51%-76%). We found six easy-to-determine preoperative patient and shoulder factors that were significantly associated with better outcomes of shoulder arthroplasty. A model based on these characteristics had good predictive properties for identifying patients likely to have a better outcome from shoulder arthroplasty. Future research could refine this model with larger patient populations from multiple practices. Level II, therapeutic study.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 109 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Colombia 1 <1%
Unknown 108 99%

Demographic breakdown

Readers by professional status Count As %
Student > Master 14 13%
Other 13 12%
Student > Doctoral Student 13 12%
Student > Bachelor 10 9%
Student > Postgraduate 5 5%
Other 18 17%
Unknown 36 33%
Readers by discipline Count As %
Medicine and Dentistry 46 42%
Nursing and Health Professions 7 6%
Engineering 5 5%
Environmental Science 1 <1%
Mathematics 1 <1%
Other 4 4%
Unknown 45 41%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 14 August 2016.
All research outputs
#8,621,995
of 25,593,129 outputs
Outputs from Clinical Orthopaedics & Related Research
#2,453
of 7,318 outputs
Outputs of similar age
#137,467
of 380,604 outputs
Outputs of similar age from Clinical Orthopaedics & Related Research
#44
of 119 outputs
Altmetric has tracked 25,593,129 research outputs across all sources so far. This one is in the 43rd percentile – i.e., 43% of other outputs scored the same or lower than it.
So far Altmetric has tracked 7,318 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.8. This one is in the 40th percentile – i.e., 40% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 380,604 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 47th percentile – i.e., 47% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 119 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 61% of its contemporaries.