↓ Skip to main content

The use of digital PCR to improve the application of quantitative molecular diagnostic methods for tuberculosis

Overview of attention for article published in BMC Infectious Diseases, August 2016
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (84th percentile)
  • High Attention Score compared to outputs of the same age and source (83rd percentile)

Mentioned by

news
1 news outlet
twitter
6 X users

Citations

dimensions_citation
43 Dimensions

Readers on

mendeley
110 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
The use of digital PCR to improve the application of quantitative molecular diagnostic methods for tuberculosis
Published in
BMC Infectious Diseases, August 2016
DOI 10.1186/s12879-016-1696-7
Pubmed ID
Authors

Alison S. Devonshire, Denise M. O’Sullivan, Isobella Honeyborne, Gerwyn Jones, Maria Karczmarczyk, Jernej Pavšič, Alice Gutteridge, Mojca Milavec, Pablo Mendoza, Heinz Schimmel, Fran Van Heuverswyn, Rebecca Gorton, Daniela Maria Cirillo, Emanuele Borroni, Kathryn Harris, Marinus Barnard, Anthenette Heydenrych, Norah Ndusilo, Carole L. Wallis, Keshree Pillay, Thomas Barry, Kate Reddington, Elvira Richter, Erkan Mozioğlu, Sema Akyürek, Burhanettin Yalçınkaya, Muslum Akgoz, Jana Žel, Carole A. Foy, Timothy D. McHugh, Jim F. Huggett

Abstract

Real-time PCR (qPCR) based methods, such as the Xpert MTB/RIF, are increasingly being used to diagnose tuberculosis (TB). While qualitative methods are adequate for diagnosis, the therapeutic monitoring of TB patients requires quantitative methods currently performed using smear microscopy. The potential use of quantitative molecular measurements for therapeutic monitoring has been investigated but findings have been variable and inconclusive. The lack of an adequate reference method and reference materials is a barrier to understanding the source of such disagreement. Digital PCR (dPCR) offers the potential for an accurate method for quantification of specific DNA sequences in reference materials which can be used to evaluate quantitative molecular methods for TB treatment monitoring. To assess a novel approach for the development of quality assurance materials we used dPCR to quantify specific DNA sequences in a range of prototype reference materials and evaluated accuracy between different laboratories and instruments. The materials were then also used to evaluate the quantitative performance of qPCR and Xpert MTB/RIF in eight clinical testing laboratories. dPCR was found to provide results in good agreement with the other methods tested and to be highly reproducible between laboratories without calibration even when using different instruments. When the reference materials were analysed with qPCR and Xpert MTB/RIF by clinical laboratories, all laboratories were able to correctly rank the reference materials according to concentration, however there was a marked difference in the measured magnitude. TB is a disease where the quantification of the pathogen could lead to better patient management and qPCR methods offer the potential to rapidly perform such analysis. However, our findings suggest that when precisely characterised materials are used to evaluate qPCR methods, the measurement result variation is too high to determine whether molecular quantification of Mycobacterium tuberculosis would provide a clinically useful readout. The methods described in this study provide a means by which the technical performance of quantitative molecular methods can be evaluated independently of clinical variability to improve accuracy of measurement results. These will assist in ultimately increasing the likelihood that such approaches could be used to improve patient management of TB.

X Demographics

X Demographics

The data shown below were collected from the profiles of 6 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 110 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Denmark 1 <1%
Unknown 109 99%

Demographic breakdown

Readers by professional status Count As %
Researcher 27 25%
Student > Master 13 12%
Student > Ph. D. Student 12 11%
Student > Bachelor 8 7%
Student > Postgraduate 7 6%
Other 16 15%
Unknown 27 25%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 26 24%
Medicine and Dentistry 17 15%
Agricultural and Biological Sciences 9 8%
Chemistry 7 6%
Immunology and Microbiology 4 4%
Other 16 15%
Unknown 31 28%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 11. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 26 September 2023.
All research outputs
#3,123,857
of 24,527,858 outputs
Outputs from BMC Infectious Diseases
#1,015
of 8,203 outputs
Outputs of similar age
#56,082
of 374,763 outputs
Outputs of similar age from BMC Infectious Diseases
#27
of 161 outputs
Altmetric has tracked 24,527,858 research outputs across all sources so far. Compared to these this one has done well and is in the 87th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 8,203 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 10.5. This one has done well, scoring higher than 87% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 374,763 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 84% of its contemporaries.
We're also able to compare this research output to 161 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 83% of its contemporaries.