↓ Skip to main content

Bad math in Linnaeus’ Philosophia Botanica

Overview of attention for article published in History and Philosophy of the Life Sciences, July 2016
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (80th percentile)
  • High Attention Score compared to outputs of the same age and source (99th percentile)

Mentioned by

blogs
1 blog
twitter
1 X user

Citations

dimensions_citation
2 Dimensions

Readers on

mendeley
7 Mendeley
Title
Bad math in Linnaeus’ Philosophia Botanica
Published in
History and Philosophy of the Life Sciences, July 2016
DOI 10.1007/s40656-016-0110-5
Pubmed ID
Authors

János Podani, András Szilágyi

Abstract

In Philosophia Botanica (1751), Carolus Linnaeus (1707-1778) presented a calculation of the number of plant genera that may be distinguished based on his taxonomic concepts. In order to derive that number, he relied upon the organs of fructification, which represent the flower and the fruit, by selecting over 30 elements from them, and then assuming that each could vary by four dimensions. However, while Linnaeus was good in counting stamens and pistils, he and many of his followers who edited or translated Philosophia Botanica were less careful, basing their calculations of the number of possible genera on flawed assumptions, or even introducing basic arithmetic errors. Furthermore, although mathematics was quite advanced in the eighteenth century, the gap between combinatorial and botanical thinking was too deep, preventing Linnaeus to seek a reasonable solution to the problem he raised. The authors demonstrate this by a historical analysis of 15 editions of Philosophia Botanica, plus many references to it, and conclude that the desired number almost always appeared in error during the past 265 years. The German botanist J. G. Gleditsch (1714-1786) was the most successful with respect to Linnaeus' original intention. Elementary mathematics demonstrates that if Linnaeus' assumptions were taken seriously, then the possible number of genera would be astronomical. The practice he followed in Genera Plantarum (1754) shows, however, that the fructification dimensions served as a universal set for Linnaeus from which he chose only the relevant ones for describing a particular genus empirically. Based on the corrections and modifications implemented in reworked editions, we suggest an evolutionary network for the historical and modern versions or translations of Philosophia Botanica.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 7 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 7 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 1 14%
Professor 1 14%
Professor > Associate Professor 1 14%
Unknown 4 57%
Readers by discipline Count As %
Agricultural and Biological Sciences 2 29%
Environmental Science 1 14%
Unknown 4 57%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 9. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 27 April 2017.
All research outputs
#4,109,828
of 24,877,869 outputs
Outputs from History and Philosophy of the Life Sciences
#84
of 486 outputs
Outputs of similar age
#68,996
of 362,788 outputs
Outputs of similar age from History and Philosophy of the Life Sciences
#1
of 6 outputs
Altmetric has tracked 24,877,869 research outputs across all sources so far. Compared to these this one has done well and is in the 83rd percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 486 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 8.7. This one has done well, scoring higher than 82% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 362,788 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 80% of its contemporaries.
We're also able to compare this research output to 6 others from the same source and published within six weeks on either side of this one. This one has scored higher than all of them