↓ Skip to main content

Dual-energy compared to single-energy CT in pediatric imaging: a phantom study for DECT clinical guidance

Overview of attention for article published in Pediatric Radiology, August 2016
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Above-average Attention Score compared to outputs of the same age and source (57th percentile)

Mentioned by

twitter
2 X users

Citations

dimensions_citation
28 Dimensions

Readers on

mendeley
50 Mendeley
Title
Dual-energy compared to single-energy CT in pediatric imaging: a phantom study for DECT clinical guidance
Published in
Pediatric Radiology, August 2016
DOI 10.1007/s00247-016-3668-x
Pubmed ID
Authors

Xiaowei Zhu, William P. McCullough, Patricia Mecca, Sabah Servaes, Kassa Darge

Abstract

Dual-energy CT technology is available on scanners from several vendors and offers significant advantages over classic single-energy CT technology in multiple clinical applications. Many studies have detailed dual-energy CT applications in adults and several have evaluated the relative radiation dose performance of dual-energy CT in adult imaging. However, little has been published on dual-energy CT imaging in the pediatric population, and the relative dose performance of dual-energy CT imaging in the pediatric population is not well described. When evaluating dual-energy CT technology for implementation into a routine clinical pediatric imaging practice, the radiation dose implications must be considered, and when comparing relative CT dose performance, image quality must also be evaluated. Therefore the purpose of this study is to develop dual-energy CT scan protocols based on our optimized single-energy scan protocols and compare the dose. We scanned the head, chest and abdomen regions of pediatric-size anthropomorphic phantoms with contrast inserts, using our optimized single-energy clinical imaging protocols on a Siemens Flash® CT scanner. We then scanned the phantoms in dual-energy mode using matching image-quality reference settings. The effective CT dose index volume (CTDIvol) of the scans was used as a surrogate for relative dose in comparing the single- and dual-energy scans. Additionally, we evaluated image quality using visual assessment and contrast-to-noise ratio. Dual-energy CT scans of the head and abdomen were dose-neutral for all three phantoms. Dual-energy CT scans of the chest showed a relative dose increase over the single-energy scan for 1- and 5-year-old child-based age-equivalent phantoms, ranging 11-20%. Quantitative analysis of image quality showed no statistically significant difference in image quality between the single-energy and dual-energy scans. There was no clinically significant difference in image quality by visual assessment. Dual-energy CT is dose-neutral in imaging the head and abdomen in children. It is not dose-neutral in chest imaging of very small children. With a better understanding of the dose consequences of converting single-energy protocols to dual-energy protocols we can begin to implement clinical dual-energy CT and utilize its unique capabilities in pediatric imaging.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 50 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 50 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 7 14%
Student > Master 6 12%
Other 5 10%
Student > Postgraduate 5 10%
Student > Ph. D. Student 4 8%
Other 8 16%
Unknown 15 30%
Readers by discipline Count As %
Medicine and Dentistry 16 32%
Physics and Astronomy 4 8%
Engineering 3 6%
Nursing and Health Professions 2 4%
Business, Management and Accounting 1 2%
Other 4 8%
Unknown 20 40%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 12 August 2016.
All research outputs
#14,730,301
of 22,882,389 outputs
Outputs from Pediatric Radiology
#1,249
of 2,088 outputs
Outputs of similar age
#216,160
of 355,872 outputs
Outputs of similar age from Pediatric Radiology
#14
of 33 outputs
Altmetric has tracked 22,882,389 research outputs across all sources so far. This one is in the 35th percentile – i.e., 35% of other outputs scored the same or lower than it.
So far Altmetric has tracked 2,088 research outputs from this source. They receive a mean Attention Score of 3.7. This one is in the 39th percentile – i.e., 39% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 355,872 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 38th percentile – i.e., 38% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 33 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 57% of its contemporaries.