↓ Skip to main content

Analytical differentiation of quinolinyl- and isoquinolinyl-substituted 1-(5-fluoropentyl)-1H-indole-3-carboxylates: 5F-PB-22 and its ten isomers

Overview of attention for article published in Forensic Toxicology, August 2016
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
5 X users

Citations

dimensions_citation
11 Dimensions

Readers on

mendeley
13 Mendeley
Title
Analytical differentiation of quinolinyl- and isoquinolinyl-substituted 1-(5-fluoropentyl)-1H-indole-3-carboxylates: 5F-PB-22 and its ten isomers
Published in
Forensic Toxicology, August 2016
DOI 10.1007/s11419-016-0334-9
Pubmed ID
Authors

Erina Kohyama, Takao Chikumoto, Hiroyuki Tada, Kiyoyuki Kitaichi, Tetsuro Ito

Abstract

Differentiation among regioisomers of synthetic cannabinoids in forensic drug analysis is a crucial issue, since all isomers are not regulated by law. New equivalent analogs obtained via minor modification of their preexisting molecules keep on emerging. Isomers formed via substitutional exchange are also a cause for concern. This study is focused on the isomeric molecules that stem from minor modifications of 5F-PB-22. The analytical properties of these molecules and methods of differentiation are reported. Scan mode analysis using gas chromatography-electron ionization-mass spectrometry (GC-EI-MS) was performed using the authentic 5F-PB-22 standard, five regioisomeric quinolinyl ester indoles, and five regioisomeric isoquinolinyl ester indoles. Because it was not possible to separate 5F-PB-22 from the 5-hydroxyquinoline isomer using GC and all analytes showed similar EI mass spectra, liquid chromatography (LC)-tandem mass spectrometry analysis was performed. Using LC, a successful separation of 5F-PB-22 from all isomers could be achieved. Based on the electrospray ionization-mass spectra, the protonated molecular ion at m/z 377.2 was selected as the precursor ion for the regioisomeric and structural isomeric differentiation. Collision-induced dissociation provides relative intensity differences in the product ions among the isomers, enabling mass spectrometric differentiation of the isomers. To our knowledge, this is the first report on mass spectrometric differentiation of 5F-PB-22 and its ten isomers.

X Demographics

X Demographics

The data shown below were collected from the profiles of 5 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 13 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 13 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 3 23%
Student > Postgraduate 2 15%
Other 1 8%
Lecturer > Senior Lecturer 1 8%
Student > Master 1 8%
Other 1 8%
Unknown 4 31%
Readers by discipline Count As %
Pharmacology, Toxicology and Pharmaceutical Science 4 31%
Chemistry 3 23%
Immunology and Microbiology 1 8%
Medicine and Dentistry 1 8%
Unknown 4 31%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 03 February 2017.
All research outputs
#12,902,380
of 22,882,389 outputs
Outputs from Forensic Toxicology
#152
of 379 outputs
Outputs of similar age
#181,401
of 355,872 outputs
Outputs of similar age from Forensic Toxicology
#7
of 14 outputs
Altmetric has tracked 22,882,389 research outputs across all sources so far. This one is in the 43rd percentile – i.e., 43% of other outputs scored the same or lower than it.
So far Altmetric has tracked 379 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.4. This one has gotten more attention than average, scoring higher than 59% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 355,872 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 48th percentile – i.e., 48% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 14 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 50% of its contemporaries.