↓ Skip to main content

Periprosthetic UHMWPE Wear Debris Induces Inflammation, Vascularization, and Innervation After Total Disc Replacement in the Lumbar Spine

Overview of attention for article published in Clinical Orthopaedics & Related Research, August 2016
Altmetric Badge

About this Attention Score

  • Good Attention Score compared to outputs of the same age (68th percentile)
  • Good Attention Score compared to outputs of the same age and source (69th percentile)

Mentioned by

twitter
6 X users
facebook
1 Facebook page

Citations

dimensions_citation
32 Dimensions

Readers on

mendeley
99 Mendeley
Title
Periprosthetic UHMWPE Wear Debris Induces Inflammation, Vascularization, and Innervation After Total Disc Replacement in the Lumbar Spine
Published in
Clinical Orthopaedics & Related Research, August 2016
DOI 10.1007/s11999-016-4996-8
Pubmed ID
Authors

Sai Y. Veruva, Todd H. Lanman, Jorge E. Isaza, Theresa A. Freeman, Steven M. Kurtz, Marla J. Steinbeck

Abstract

The pathophysiology and mechanisms driving the generation of unintended pain after total disc replacement (TDR) remain unexplored. Ultrahigh-molecular-weight polyethylene (UHMWPE) wear debris from TDRs is known to induce inflammation, which may result in pain. The purpose of this study was to determine whether (1) periprosthetic UHMWPE wear debris induces immune responses that lead to the production of tumor necrosis factor-α (TNFα) and interleukin (IL)-1ß, the vascularization factors, vascular endothelial growth factor (VEGF) and platelet-derived growth factor-bb (PDGFbb), and the innervation/pain factors, nerve growth factor (NGF) and substance P; (2) the number of macrophages is associated with the production of the aforementioned factors; (3) the wear debris-induced inflammatory pathogenesis involves an increase in vascularization and associated innervation. Periprosthetic tissues from our collection of 11 patients with contemporary TDRs were evaluated using polarized light microscopy to quantify UHMWPE wear particles. The major reason for revision (mean implantation time of 3 years [range, 1-6 years]) was pain. For control subjects, biopsy samples from four patients with degenerative disc disease with severe pain and autopsy samples from three normal patients with no history of back pain were also investigated. Immunohistochemistry and histology were used to identify secretory factors, macrophages, and blood vessels. Immunostained serial sections were imaged at ×200 magnification and using MATLAB and NIH ImageJ, a threshold was determined for each factor and used to quantify positive staining normalized to tissue sectional area. The Mann-Whitney U test was used to compare results from different patient groups, whereas the Spearman Rho test was used to determine correlations. Significance was based on p < 0.05. The mean percent area of all six inflammatory, vascularization, and innervation factors was higher in TDR tissues when compared with normal disc tissues. Based on nonparametric data analysis, those factors showing the most significant increase included TNFα (5.17 ± 1.76 versus 0.05 ± 0.03, p = 0.02), VEGF (3.02 ± 1.01 versus 0.02 ± 0.002, p = 0.02), and substance P (4.15 ± 1.01 versus 0.08 ± 0.04, p = 0.02). The mean percent area for IL-1ß (2.41 ± 0.66 versus 0.13 ± 0.13, p = 0.01), VEGF (3.02 ± 1.01 versus 0.34 ± 0.29, p = 0.04), and substance P (4.15 ± 1.01 versus 1.05 ± 0.46, p = 0.01) was also higher in TDR tissues when compared with disc tissues from patients with painful degenerative disc disease. Five of the factors, TNFα, IL-1ß, VEGF, NGF, and substance P, strongly correlated with the number of wear particles, macrophages, and blood vessels. The most notable correlations included TNFα with wear particles (p < 0.001, ρ = 0.63), VEGF with macrophages (p = 0.001, ρ = 0.71), and NGF with blood vessels (p < 0.001, ρ = 0.70). Of particular significance, the expression of PDGFbb, NGF, and substance P was predominantly localized to blood vessels/nerve fibers. These findings indicate wear debris-induced inflammatory reactions can be linked to enhanced vascularization and associated innervation/pain factor production at periprosthetic sites around TDRs. Elucidating the pathogenesis of inflammatory particle disease will provide information needed to identify potential therapeutic targets and treatment strategies to mitigate pain and potentially avoid revision surgery. Level III, therapeutic study.

X Demographics

X Demographics

The data shown below were collected from the profiles of 6 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 99 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 99 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 12 12%
Student > Master 12 12%
Student > Doctoral Student 9 9%
Student > Bachelor 9 9%
Other 7 7%
Other 16 16%
Unknown 34 34%
Readers by discipline Count As %
Medicine and Dentistry 28 28%
Engineering 12 12%
Materials Science 6 6%
Nursing and Health Professions 4 4%
Biochemistry, Genetics and Molecular Biology 3 3%
Other 6 6%
Unknown 40 40%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 5. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 18 April 2017.
All research outputs
#7,547,182
of 26,017,215 outputs
Outputs from Clinical Orthopaedics & Related Research
#2,061
of 7,423 outputs
Outputs of similar age
#120,767
of 388,200 outputs
Outputs of similar age from Clinical Orthopaedics & Related Research
#37
of 121 outputs
Altmetric has tracked 26,017,215 research outputs across all sources so far. This one has received more attention than most of these and is in the 70th percentile.
So far Altmetric has tracked 7,423 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.8. This one has gotten more attention than average, scoring higher than 71% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 388,200 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 68% of its contemporaries.
We're also able to compare this research output to 121 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 69% of its contemporaries.