↓ Skip to main content

Local Versus Global Effects of Isoflurane Anesthesia on Visual Processing in the Fly Brain

Overview of attention for article published in eNeuro, July 2016
Altmetric Badge

Mentioned by

twitter
2 X users

Citations

dimensions_citation
17 Dimensions

Readers on

mendeley
34 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Local Versus Global Effects of Isoflurane Anesthesia on Visual Processing in the Fly Brain
Published in
eNeuro, July 2016
DOI 10.1523/eneuro.0116-16.2016
Pubmed ID
Authors

Dror Cohen, Oressia H. Zalucki, Bruno van Swinderen, Naotsugu Tsuchiya

Abstract

What characteristics of neural activity distinguish the awake and anesthetized brain? Drugs such as isoflurane abolish behavioral responsiveness in all animals, implying evolutionarily conserved mechanisms. However, it is unclear whether this conservation is reflected at the level of neural activity. Studies in humans have shown that anesthesia is characterized by spatially distinct spectral and coherence signatures that have also been implicated in the global impairment of cortical communication. We questioned whether anesthesia has similar effects on global and local neural processing in one of the smallest brains, that of the fruit fly (Drosophila melanogaster). Using a recently developed multielectrode technique, we recorded local field potentials from different areas of the fly brain simultaneously, while manipulating the concentration of isoflurane. Flickering visual stimuli ('frequency tags') allowed us to track evoked responses in the frequency domain and measure the effects of isoflurane throughout the brain. We found that isoflurane reduced power and coherence at the tagging frequency (13 or 17 Hz) in central brain regions. Unexpectedly, isoflurane increased power and coherence at twice the tag frequency (26 or 34 Hz) in the optic lobes of the fly, but only for specific stimulus configurations. By modeling the periodic responses, we show that the increase in power in peripheral areas can be attributed to local neuroanatomy. We further show that the effects on coherence can be explained by impacted signal-to-noise ratios. Together, our results show that general anesthesia has distinct local and global effects on neuronal processing in the fruit fly brain.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 34 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 34 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 10 29%
Researcher 4 12%
Student > Master 4 12%
Other 3 9%
Student > Bachelor 3 9%
Other 6 18%
Unknown 4 12%
Readers by discipline Count As %
Neuroscience 12 35%
Agricultural and Biological Sciences 6 18%
Medicine and Dentistry 4 12%
Engineering 2 6%
Biochemistry, Genetics and Molecular Biology 1 3%
Other 5 15%
Unknown 4 12%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 04 February 2020.
All research outputs
#15,866,607
of 23,577,654 outputs
Outputs from eNeuro
#1,925
of 2,308 outputs
Outputs of similar age
#229,331
of 356,920 outputs
Outputs of similar age from eNeuro
#32
of 46 outputs
Altmetric has tracked 23,577,654 research outputs across all sources so far. This one is in the 22nd percentile – i.e., 22% of other outputs scored the same or lower than it.
So far Altmetric has tracked 2,308 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 14.9. This one is in the 13th percentile – i.e., 13% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 356,920 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 27th percentile – i.e., 27% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 46 others from the same source and published within six weeks on either side of this one. This one is in the 28th percentile – i.e., 28% of its contemporaries scored the same or lower than it.