↓ Skip to main content

Evaluation and Application of the Diffusive Gradients in Thin Films Technique Using a Mixed-Binding Gel Layer for Measuring Inorganic Arsenic and Metals in Mining Impacted Water and Soil

Overview of attention for article published in Analytical Chemistry, November 2012
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
44 Dimensions

Readers on

mendeley
32 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Evaluation and Application of the Diffusive Gradients in Thin Films Technique Using a Mixed-Binding Gel Layer for Measuring Inorganic Arsenic and Metals in Mining Impacted Water and Soil
Published in
Analytical Chemistry, November 2012
DOI 10.1021/ac302430b
Pubmed ID
Authors

Trang Huynh, Hao Zhang, Barry Noller

Abstract

The diffusive gradients in thin films (DGT) equipped with a Chelex or ferrihydrite binding gel has been designed to enable the measurement of either labile metal species or inorganic arsenic, respectively. In the mine impacted environment, metals and metalloids commonly coexist in a variety of species. This study, for the first time reports the performance of the DGT with a mixed-binding layer (MBL), consisting of Chelex and ferrihydrite for measurements of both metals and arsenic in a single assay. The MBL that consists of a combination of Chelex and ferrihydrite at a ratio of 1:2 has the greatest binding capacity for arsenic (As), cadmium (Cd), copper (Cu), lead (Pb), and zinc (Zn). The elemental concentrations measured by using MBL-DGT (C(DGT)) were comparable (92-104%) with the original test solution concentrations (C(SOL)). The measurement of As by using MBL-DGT was consistent across a wide pH range (3-8) and ionic strength (0.001-0.1 M). At high pH (9), As measurement was slightly affected (∼80%). The measurements of Cd, Pb, and Zn were affected at low pH (<3) and high pH (9). Measurements of Cd, Cu, and Pb were affected at low ionic strength (0.001 M). At high ionic strength (0.1 M), measurements of Cd; Cu and Pb were slightly affected. The capacity of MBL-DGT for quantitative measurement in a multielements solution is effectively limited to 15 μg for As and 70 μg for metals per MBL-DGT device. Good correlations (p < 0.01) between MBL-DGT measurements and ferrihydrite or Chelex DGT were obtained for As, Cd, Cu, Pb, and Zn in water and soil with exception for Cd and Cu (p < 0.05) when deployed in soil.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 32 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 1 3%
China 1 3%
Unknown 30 94%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 10 31%
Student > Master 8 25%
Researcher 4 13%
Other 2 6%
Student > Doctoral Student 1 3%
Other 2 6%
Unknown 5 16%
Readers by discipline Count As %
Environmental Science 8 25%
Agricultural and Biological Sciences 5 16%
Chemistry 5 16%
Earth and Planetary Sciences 2 6%
Veterinary Science and Veterinary Medicine 1 3%
Other 3 9%
Unknown 8 25%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 12 November 2012.
All research outputs
#20,172,971
of 22,685,926 outputs
Outputs from Analytical Chemistry
#24,229
of 26,364 outputs
Outputs of similar age
#159,553
of 179,649 outputs
Outputs of similar age from Analytical Chemistry
#194
of 248 outputs
Altmetric has tracked 22,685,926 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 26,364 research outputs from this source. They receive a mean Attention Score of 4.7. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 179,649 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 248 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.