↓ Skip to main content

GPU-based RFA simulation for minimally invasive cancer treatment of liver tumours

Overview of attention for article published in International Journal of Computer Assisted Radiology and Surgery, August 2016
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
30 Dimensions

Readers on

mendeley
37 Mendeley
Title
GPU-based RFA simulation for minimally invasive cancer treatment of liver tumours
Published in
International Journal of Computer Assisted Radiology and Surgery, August 2016
DOI 10.1007/s11548-016-1469-1
Pubmed ID
Authors

Panchatcharam Mariappan, Phil Weir, Ronan Flanagan, Philip Voglreiter, Tuomas Alhonnoro, Mika Pollari, Michael Moche, Harald Busse, Jurgen Futterer, Horst Rupert Portugaller, Roberto Blanco Sequeiros, Marina Kolesnik

Abstract

Radiofrequency ablation (RFA) is one of the most popular and well-standardized minimally invasive cancer treatments (MICT) for liver tumours, employed where surgical resection has been contraindicated. Less-experienced interventional radiologists (IRs) require an appropriate planning tool for the treatment to help avoid incomplete treatment and so reduce the tumour recurrence risk. Although a few tools are available to predict the ablation lesion geometry, the process is computationally expensive. Also, in our implementation, a few patient-specific parameters are used to improve the accuracy of the lesion prediction. Advanced heterogeneous computing using personal computers, incorporating the graphics processing unit (GPU) and the central processing unit (CPU), is proposed to predict the ablation lesion geometry. The most recent GPU technology is used to accelerate the finite element approximation of Penne's bioheat equation and a three state cell model. Patient-specific input parameters are used in the bioheat model to improve accuracy of the predicted lesion. A fast GPU-based RFA solver is developed to predict the lesion by doing most of the computational tasks in the GPU, while reserving the CPU for concurrent tasks such as lesion extraction based on the heat deposition at each finite element node. The solver takes less than 3 min for a treatment duration of 26 min. When the model receives patient-specific input parameters, the deviation between real and predicted lesion is below 3 mm. A multi-centre retrospective study indicates that the fast RFA solver is capable of providing the IR with the predicted lesion in the short time period before the intervention begins when the patient has been clinically prepared for the treatment.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 37 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 37 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 10 27%
Student > Ph. D. Student 8 22%
Student > Bachelor 4 11%
Other 2 5%
Student > Doctoral Student 2 5%
Other 4 11%
Unknown 7 19%
Readers by discipline Count As %
Medicine and Dentistry 12 32%
Engineering 7 19%
Computer Science 2 5%
Mathematics 1 3%
Nursing and Health Professions 1 3%
Other 4 11%
Unknown 10 27%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 20 August 2016.
All research outputs
#20,337,788
of 22,883,326 outputs
Outputs from International Journal of Computer Assisted Radiology and Surgery
#668
of 848 outputs
Outputs of similar age
#299,346
of 343,111 outputs
Outputs of similar age from International Journal of Computer Assisted Radiology and Surgery
#9
of 12 outputs
Altmetric has tracked 22,883,326 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 848 research outputs from this source. They receive a mean Attention Score of 3.1. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 343,111 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 12 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.