↓ Skip to main content

Bifidobacterium breve with α-Linolenic Acid and Linoleic Acid Alters Fatty Acid Metabolism in the Maternal Separation Model of Irritable Bowel Syndrome

Overview of attention for article published in PLOS ONE, November 2012
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (83rd percentile)
  • Good Attention Score compared to outputs of the same age and source (78th percentile)

Mentioned by

twitter
1 X user
patent
2 patents
facebook
1 Facebook page

Citations

dimensions_citation
30 Dimensions

Readers on

mendeley
81 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Bifidobacterium breve with α-Linolenic Acid and Linoleic Acid Alters Fatty Acid Metabolism in the Maternal Separation Model of Irritable Bowel Syndrome
Published in
PLOS ONE, November 2012
DOI 10.1371/journal.pone.0048159
Pubmed ID
Authors

Eoin Barrett, Patrick Fitzgerald, Timothy G. Dinan, John F. Cryan, R. Paul Ross, Eamonn M. Quigley, Fergus Shanahan, Barry Kiely, Gerald F. Fitzgerald, Paul W. O'Toole, Catherine Stanton

Abstract

The aim of this study was to compare the impact of dietary supplementation with a Bifidobacterium breve strain together with linoleic acid & α-linolenic acid, for 7 weeks, on colonic sensitivity and fatty acid metabolism in rats. Maternally separated and non-maternally separated Sprague Dawley rats (n = 15) were orally gavaged with either B. breve DPC6330 (10(9) microorganisms/day) alone or in combination with 0.5% (w/w) linoleic acid & 0.5% (w/w) α-linolenic acid, daily for 7 weeks and compared with trehalose and bovine serum albumin. Tissue fatty acid composition was assessed by gas-liquid chromatography and visceral hypersensitivity was assessed by colorectal distension. Significant differences in the fatty acid profiles of the non-separated controls and maternally separated controls were observed for α-linolenic acid and arachidonic acid in the liver, oleic acid and eicosenoic acid (c11) in adipose tissue, and for palmitoleic acid and docosahexaenoic acid in serum (p<0.05). Administration of B. breve DPC6330 to MS rats significantly increased palmitoleic acid, arachidonic acid and docosahexaenoic acid in the liver, eicosenoic acid (c11) in adipose tissue and palmitoleic acid in the prefrontal cortex (p<0.05), whereas feeding B. breve DPC6330 to non separated rats significantly increased eicosapentaenoic acid and docosapentaenoic acid in serum (p<0.05) compared with the NS un-supplemented controls. Administration of B. breve DPC6330 in combination with linoleic acid and α-linolenic acid to maternally separated rats significantly increased docosapentaenoic acid in the serum (p<0.01) and α-linolenic acid in adipose tissue (p<0.001), whereas feeding B. breve DPC6330 with fatty acid supplementation to non-separated rats significantly increased liver and serum docosapentaenoic acid (p<0.05), and α-linolenic acid in adipose tissue (p<0.001). B. breve DPC6330 influenced host fatty acid metabolism. Administration of B. breve DPC6330 to maternally separated rats significantly modified the palmitoleic acid, arachidonic acid and docosahexaenoic acid contents in tissues. The effect was not observed in non-separated animals.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 81 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Ireland 1 1%
Unknown 80 99%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 15 19%
Researcher 14 17%
Student > Bachelor 9 11%
Student > Master 9 11%
Student > Doctoral Student 3 4%
Other 11 14%
Unknown 20 25%
Readers by discipline Count As %
Agricultural and Biological Sciences 16 20%
Medicine and Dentistry 16 20%
Chemistry 4 5%
Biochemistry, Genetics and Molecular Biology 3 4%
Psychology 3 4%
Other 14 17%
Unknown 25 31%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 7. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 13 October 2021.
All research outputs
#4,422,453
of 22,685,926 outputs
Outputs from PLOS ONE
#60,637
of 193,650 outputs
Outputs of similar age
#45,685
of 275,819 outputs
Outputs of similar age from PLOS ONE
#987
of 4,682 outputs
Altmetric has tracked 22,685,926 research outputs across all sources so far. Compared to these this one has done well and is in the 80th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 193,650 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 15.0. This one has gotten more attention than average, scoring higher than 68% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 275,819 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 83% of its contemporaries.
We're also able to compare this research output to 4,682 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 78% of its contemporaries.