↓ Skip to main content

MYCN and HDAC5 transcriptionally repress CD9 to trigger invasion and metastasis in neuroblastoma

Overview of attention for article published in Oncotarget, August 2016
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 X users
facebook
1 Facebook page

Citations

dimensions_citation
31 Dimensions

Readers on

mendeley
49 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
MYCN and HDAC5 transcriptionally repress CD9 to trigger invasion and metastasis in neuroblastoma
Published in
Oncotarget, August 2016
DOI 10.18632/oncotarget.11662
Pubmed ID
Authors

Johannes Fabian, Desirée Opitz, Kristina Althoff, Marco Lodrini, Barbara Hero, Ruth Volland, Anneleen Beckers, Katleen de Preter, Anneleen Decock, Nitin Patil, Mohammed Abba, Annette Kopp-Schneider, Kathy Astrahantseff, Jasmin Wünschel, Sebastian Pfeil, Maria Ercu, Annette Künkele, Jamie Hu, Theresa Thole, Leonille Schweizer, Gunhild Mechtersheimer, Daniel Carter, Belamy B. Cheung, Odilia Popanda, Andreas von Deimling, Jan Koster, Rogier Versteeg, Manfred Schwab, Glenn M. Marshall, Frank Speleman, Ulrike Erb, Margot Zoeller, Heike Allgayer, Thorsten Simon, Matthias Fischer, Andreas E. Kulozik, Angelika Eggert, Olaf Witt, Johannes H. Schulte, Hedwig E. Deubzer

Abstract

The systemic and resistant nature of metastatic neuroblastoma renders it largely incurable with current multimodal treatment. Clinical progression stems mainly from the increasing burden of metastatic colonization. Therapeutically inhibiting the migration-invasion-metastasis cascade would be of great benefit, but the mechanisms driving this cycle are as yet poorly understood. In-depth transcriptome analyses and ChIP-qPCR identified the cell surface glycoprotein, CD9, as a major downstream player and direct target of the recently described GRHL1 tumor suppressor. CD9 is known to block or facilitate cancer cell motility and metastasis dependent upon entity. High-level CD9 expression in primary neuroblastomas correlated with patient survival and established markers for favorable disease. Low-level CD9 expression was an independent risk factor for adverse outcome. MYCN and HDAC5 colocalized to the CD9 promoter and repressed transcription. CD9 expression diminished with progressive tumor development in the TH-MYCN transgenic mouse model for neuroblastoma, and CD9 expression in neuroblastic tumors was far below that in ganglia from wildtype mice. Primary neuroblastomas lacking MYCN amplifications displayed differential CD9 promoter methylation in methyl-CpG-binding domain sequencing analyses, and high-level methylation was associated with advanced stage disease, supporting epigenetic regulation. Inducing CD9 expression in a SH-EP cell model inhibited migration and invasion in Boyden chamber assays. Enforced CD9 expression in neuroblastoma cells transplanted onto chicken chorioallantoic membranes strongly reduced metastasis to embryonic bone marrow. Combined treatment of neuroblastoma cells with HDAC/DNA methyltransferase inhibitors synergistically induced CD9 expression despite hypoxic, metabolic or cytotoxic stress. Our results show CD9 is a critical and indirectly druggable suppressor of the invasion-metastasis cycle in neuroblastoma.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 49 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Belgium 1 2%
Unknown 48 98%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 11 22%
Researcher 5 10%
Student > Master 5 10%
Student > Bachelor 4 8%
Other 3 6%
Other 6 12%
Unknown 15 31%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 14 29%
Agricultural and Biological Sciences 7 14%
Medicine and Dentistry 7 14%
Social Sciences 2 4%
Economics, Econometrics and Finance 1 2%
Other 2 4%
Unknown 16 33%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 13 September 2016.
All research outputs
#17,813,370
of 22,884,315 outputs
Outputs from Oncotarget
#7,674
of 14,329 outputs
Outputs of similar age
#244,812
of 338,387 outputs
Outputs of similar age from Oncotarget
#598
of 1,226 outputs
Altmetric has tracked 22,884,315 research outputs across all sources so far. This one is in the 19th percentile – i.e., 19% of other outputs scored the same or lower than it.
So far Altmetric has tracked 14,329 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.5. This one is in the 41st percentile – i.e., 41% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 338,387 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 23rd percentile – i.e., 23% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 1,226 others from the same source and published within six weeks on either side of this one. This one is in the 46th percentile – i.e., 46% of its contemporaries scored the same or lower than it.