↓ Skip to main content

SFC-MS/MS as an orthogonal technique for improved screening of polar analytes in anti-doping control

Overview of attention for article published in Analytical & Bioanalytical Chemistry, August 2016
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 X users

Citations

dimensions_citation
33 Dimensions

Readers on

mendeley
45 Mendeley
Title
SFC-MS/MS as an orthogonal technique for improved screening of polar analytes in anti-doping control
Published in
Analytical & Bioanalytical Chemistry, August 2016
DOI 10.1007/s00216-016-9805-4
Pubmed ID
Authors

Maria Kristina Parr, Bernhard Wuest, Edgar Naegele, Jan F. Joseph, Maxi Wenzel, Alexander H. Schmidt, Mijo Stanic, Xavier de la Torre, Francesco Botrè

Abstract

HPLC is considered the method of choice for the separation of various classes of drugs. However, some analytes are still challenging as HPLC shows limited resolution capabilities for highly polar analytes as they interact insufficiently on conventional reversed-phase (RP) columns. Especially in combination with mass spectrometric detection, limitations apply for alterations of stationary phases. Some highly polar sympathomimetic drugs and their metabolites showed almost no retention on different RP columns. Their retention remains poor even on phenylhexyl phases that show different selectivity due to π-π interactions. Supercritical fluid chromatography (SFC) as an orthogonal separation technique to HPLC may help to overcome these issues. Selected polar drugs and metabolites were analyzed utilizing SFC separation. All compounds showed sharp peaks and good retention even for the very polar analytes, such as sulfoconjugates. Retention times and elution orders in SFC are different to both RP and HILIC separations as a result of the orthogonality. Short cycle times could be realized. As temperature and pressure strongly influence the polarity of supercritical fluids, precise regulation of temperature and backpressure is required for the stability of the retention times. As CO2 is the main constituent of the mobile phase in SFC, solvent consumption and solvent waste are considerably reduced. Graphical Abstract SFC-MS/MS vs. LC-MS/MS.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 45 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 45 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 8 18%
Student > Ph. D. Student 7 16%
Researcher 6 13%
Student > Bachelor 3 7%
Other 3 7%
Other 4 9%
Unknown 14 31%
Readers by discipline Count As %
Chemistry 17 38%
Pharmacology, Toxicology and Pharmaceutical Science 4 9%
Medicine and Dentistry 2 4%
Arts and Humanities 1 2%
Agricultural and Biological Sciences 1 2%
Other 3 7%
Unknown 17 38%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 13 September 2016.
All research outputs
#20,657,128
of 25,374,917 outputs
Outputs from Analytical & Bioanalytical Chemistry
#6,601
of 9,619 outputs
Outputs of similar age
#276,468
of 354,259 outputs
Outputs of similar age from Analytical & Bioanalytical Chemistry
#83
of 175 outputs
Altmetric has tracked 25,374,917 research outputs across all sources so far. This one is in the 10th percentile – i.e., 10% of other outputs scored the same or lower than it.
So far Altmetric has tracked 9,619 research outputs from this source. They receive a mean Attention Score of 3.1. This one is in the 21st percentile – i.e., 21% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 354,259 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 11th percentile – i.e., 11% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 175 others from the same source and published within six weeks on either side of this one. This one is in the 45th percentile – i.e., 45% of its contemporaries scored the same or lower than it.