↓ Skip to main content

Deregulation of the Hippo pathway in mouse mammary stem cells promotes mammary tumorigenesis

Overview of attention for article published in Mammalian Genome, September 2016
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
13 Dimensions

Readers on

mendeley
17 Mendeley
Title
Deregulation of the Hippo pathway in mouse mammary stem cells promotes mammary tumorigenesis
Published in
Mammalian Genome, September 2016
DOI 10.1007/s00335-016-9662-7
Pubmed ID
Authors

Hongbin Li, Barry M. Gumbiner

Abstract

The Hippo-YAP pathway mediates organ size control, contact inhibition, and tumorigenesis. It is a kinase cascade that inhibits the nuclear localization and transcriptional activities of YAP and TAZ. E-cadherin, cell junctions, polarity proteins, and the merlin/NF2 tumor suppressor activate the pathway to inhibit YAP/TAZ activity, while growth factor signaling inhibits the pathway to activate YAP/TAZ in the nucleus. We examined its role in the development of mouse mammary glands and tumor formation using gland reconstitution by transplantation of genetically modified mammary stem cells (MaSCs). Knockdown of YAP and TAZ with shRNA in MaSCs did not inhibit gland reconstitution. In contrast, knockdown of β-catenin blocked gland reconstitution, consistent with the known role of Wnt signaling in mammary gland development. However, we find that Hippo signaling is involved in mammary tumor formation. Expression of a constitutively active form of YAP caused rapid formation of large tumors. Moreover, knockdown of YAP/TAZ slowed the development of tumors in polyoma middle T transgenic mice, a well-studied mammary tumor model involving activation of several signaling pathways. YAP accumulated in nuclei of mammary glands in ErbB2/EGFR-transgenic mice, suggesting that EGFR signaling affects YAP in vivo similar to cell culture. ErbB2/EGFR-transgenic mice develop mammary tumors in 7-8 months, but surprisingly, MaSCs from these mice did not form tumors when transplanted into host mice. Nonetheless, expression of dominant-negative Lats, which inhibits Hippo signaling, leads to tumor formation in ErbB2-transgenic mice, suggesting that Hippo signaling is involved in EGFR-induced mammary tumorigenesis.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 17 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 17 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 4 24%
Student > Master 3 18%
Researcher 2 12%
Lecturer 1 6%
Other 1 6%
Other 1 6%
Unknown 5 29%
Readers by discipline Count As %
Agricultural and Biological Sciences 5 29%
Biochemistry, Genetics and Molecular Biology 5 29%
Veterinary Science and Veterinary Medicine 1 6%
Unknown 6 35%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 14 September 2016.
All research outputs
#20,341,859
of 22,888,307 outputs
Outputs from Mammalian Genome
#1,063
of 1,126 outputs
Outputs of similar age
#291,904
of 334,696 outputs
Outputs of similar age from Mammalian Genome
#7
of 8 outputs
Altmetric has tracked 22,888,307 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,126 research outputs from this source. They receive a mean Attention Score of 4.6. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 334,696 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 8 others from the same source and published within six weeks on either side of this one.