↓ Skip to main content

Basic MR sequence parameters systematically bias automated brain volume estimation

Overview of attention for article published in Neuroradiology, September 2016
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (86th percentile)
  • High Attention Score compared to outputs of the same age and source (87th percentile)

Mentioned by

news
1 news outlet
twitter
7 X users

Citations

dimensions_citation
20 Dimensions

Readers on

mendeley
61 Mendeley
Title
Basic MR sequence parameters systematically bias automated brain volume estimation
Published in
Neuroradiology, September 2016
DOI 10.1007/s00234-016-1737-3
Pubmed ID
Authors

Sven Haller, Pavel Falkovskiy, Reto Meuli, Jean-Philippe Thiran, Gunnar Krueger, Karl-Olof Lovblad, Tobias Kober, Alexis Roche, Bénédicte Marechal

Abstract

Automated brain MRI morphometry, including hippocampal volumetry for Alzheimer disease, is increasingly recognized as a biomarker. Consequently, a rapidly increasing number of software tools have become available. We tested whether modifications of simple MR protocol parameters typically used in clinical routine systematically bias automated brain MRI segmentation results. The study was approved by the local ethical committee and included 20 consecutive patients (13 females, mean age 75.8 ± 13.8 years) undergoing clinical brain MRI at 1.5 T for workup of cognitive decline. We compared three 3D T1 magnetization prepared rapid gradient echo (MPRAGE) sequences with the following parameter settings: ADNI-2 1.2 mm iso-voxel, no image filtering, LOCAL- 1.0 mm iso-voxel no image filtering, LOCAL+ 1.0 mm iso-voxel with image edge enhancement. Brain segmentation was performed by two different and established analysis tools, FreeSurfer and MorphoBox, using standard parameters. Spatial resolution (1.0 versus 1.2 mm iso-voxel) and modification in contrast resulted in relative estimated volume difference of up to 4.28 % (p < 0.001) in cortical gray matter and 4.16 % (p < 0.01) in hippocampus. Image data filtering resulted in estimated volume difference of up to 5.48 % (p < 0.05) in cortical gray matter. A simple change of MR parameters, notably spatial resolution, contrast, and filtering, may systematically bias results of automated brain MRI morphometry of up to 4-5 %. This is in the same range as early disease-related brain volume alterations, for example, in Alzheimer disease. Automated brain segmentation software packages should therefore require strict MR parameter selection or include compensatory algorithms to avoid MR parameter-related bias of brain morphometry results.

X Demographics

X Demographics

The data shown below were collected from the profiles of 7 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 61 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 61 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 11 18%
Researcher 10 16%
Student > Ph. D. Student 9 15%
Other 6 10%
Student > Doctoral Student 4 7%
Other 11 18%
Unknown 10 16%
Readers by discipline Count As %
Medicine and Dentistry 10 16%
Engineering 10 16%
Neuroscience 9 15%
Computer Science 8 13%
Psychology 3 5%
Other 7 11%
Unknown 14 23%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 13. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 23 September 2016.
All research outputs
#2,739,952
of 25,318,210 outputs
Outputs from Neuroradiology
#55
of 1,536 outputs
Outputs of similar age
#44,330
of 330,207 outputs
Outputs of similar age from Neuroradiology
#2
of 8 outputs
Altmetric has tracked 25,318,210 research outputs across all sources so far. Compared to these this one has done well and is in the 89th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 1,536 research outputs from this source. They receive a mean Attention Score of 3.9. This one has done particularly well, scoring higher than 96% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 330,207 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 86% of its contemporaries.
We're also able to compare this research output to 8 others from the same source and published within six weeks on either side of this one. This one has scored higher than 6 of them.