↓ Skip to main content

Autoinducer-2 analogs and electric fields - an antibiotic-free bacterial biofilm combination treatment

Overview of attention for article published in Biomedical Microdevices, September 2016
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 X users

Citations

dimensions_citation
12 Dimensions

Readers on

mendeley
43 Mendeley
Title
Autoinducer-2 analogs and electric fields - an antibiotic-free bacterial biofilm combination treatment
Published in
Biomedical Microdevices, September 2016
DOI 10.1007/s10544-016-0120-9
Pubmed ID
Authors

Sowmya Subramanian, Konstantinos Gerasopoulos, Min Guo, Herman O. Sintim, William E. Bentley, Reza Ghodssi

Abstract

Bacterial biofilms are a common cause of chronic medical implant infections. Treatment and eradication of biofilms by conventional antibiotic therapy has major drawbacks including toxicity and side effects associated with high-dosage antibiotics. Additionally, administration of high doses of antibiotics may facilitate the emergence of antibiotic resistant bacteria. Thus, there is an urgent need for the development of treatments that are not based on conventional antibiotic therapies. Presented herein is a novel bacterial biofilm combination treatment independent of traditional antibiotics, by using low electric fields in combination with small molecule inhibitors of bacterial quorum sensing - autoinducer-2 analogs. We investigate the effect of this treatment on mature Escherichia coli biofilms by application of an alternating and offset electric potential in combination with the small molecule inhibitor for 24 h using both macro and micro-scale devices. Crystal violet staining of the macro-scale biofilms shows a 46 % decrease in biomass compared to the untreated control. We demonstrate enhanced treatment efficacy of the combination therapy using a high-throughput polydimethylsiloxane-based microfluidic biofilm analysis platform. This microfluidic flow cell is designed to reduce the growth variance of in vitro biofilms while providing an integrated control, and thus allows for a more reliable comparison and evaluation of new biofilm treatments on a single device. We utilize linear array charge-coupled devices to perform real-time tracking of biomass by monitoring changes in optical density. End-point confocal microscopy measurements of biofilms treated with the autoinducer analog and electric fields in the microfluidic device show a 78 % decrease in average biofilm thickness in comparison to the negative controls and demonstrate good correlation with real-time optical density measurements. Additionally, the combination treatment showed 76 % better treatment efficacy compared to conventional antibiotic therapy. Taken together these results suggest that the antibiotic-free combination treatment described here may provide an effective alternative to traditional antibiotic therapies against bacterial biofilm infections. Use of this combination treatment in the medical and environmental fields would alleviate side effects associated with high-dosage antibiotic therapies, and reduce the rise of antibiotic-resistant bacteria.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 43 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United Kingdom 1 2%
Unknown 42 98%

Demographic breakdown

Readers by professional status Count As %
Student > Master 11 26%
Student > Ph. D. Student 7 16%
Researcher 5 12%
Student > Doctoral Student 4 9%
Professor 3 7%
Other 9 21%
Unknown 4 9%
Readers by discipline Count As %
Engineering 10 23%
Agricultural and Biological Sciences 6 14%
Biochemistry, Genetics and Molecular Biology 4 9%
Medicine and Dentistry 4 9%
Materials Science 2 5%
Other 10 23%
Unknown 7 16%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 21 September 2016.
All research outputs
#17,817,005
of 22,889,074 outputs
Outputs from Biomedical Microdevices
#593
of 747 outputs
Outputs of similar age
#229,706
of 320,547 outputs
Outputs of similar age from Biomedical Microdevices
#6
of 10 outputs
Altmetric has tracked 22,889,074 research outputs across all sources so far. This one is in the 19th percentile – i.e., 19% of other outputs scored the same or lower than it.
So far Altmetric has tracked 747 research outputs from this source. They receive a mean Attention Score of 4.1. This one is in the 18th percentile – i.e., 18% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 320,547 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 24th percentile – i.e., 24% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 10 others from the same source and published within six weeks on either side of this one. This one has scored higher than 4 of them.