↓ Skip to main content

Neuroprotection Through Rapamycin-Induced Activation of Autophagy and PI3K/Akt1/mTOR/CREB Signaling Against Amyloid-β-Induced Oxidative Stress, Synaptic/Neurotransmission Dysfunction, and…

Overview of attention for article published in Molecular Neurobiology, September 2016
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (86th percentile)
  • High Attention Score compared to outputs of the same age and source (91st percentile)

Mentioned by

news
1 news outlet
twitter
8 X users

Citations

dimensions_citation
149 Dimensions

Readers on

mendeley
101 Mendeley
Title
Neuroprotection Through Rapamycin-Induced Activation of Autophagy and PI3K/Akt1/mTOR/CREB Signaling Against Amyloid-β-Induced Oxidative Stress, Synaptic/Neurotransmission Dysfunction, and Neurodegeneration in Adult Rats
Published in
Molecular Neurobiology, September 2016
DOI 10.1007/s12035-016-0129-3
Pubmed ID
Authors

Abhishek Kumar Singh, Mahendra Pratap Kashyap, Vinay Kumar Tripathi, Sandeep Singh, Geetika Garg, Syed Ibrahim Rizvi

Abstract

Autophagy is a catabolic process involved in the continuous removal of toxic protein aggregates and cellular organelles to maintain the homeostasis and functional integrity of cells. The mechanistic understanding of autophagy mediated neuroprotection during the development of neurodegenerative disorders remains elusive. Here, we investigated the potential role of rapamycin-induced activation of autophagy and PI3K/Akt1/mTOR/CREB pathway(s) in the neuroprotection of amyloid-beta (Aβ1-42)-insulted hippocampal neurons in rat model of Alzheimer's disease (AD) like phenotypes. A single intra-hippocampal injection of Aβ1-42 impaired redox balance and markedly induced synaptic dysfunction, neurotransmission dysfunction, and cognitive deficit, and suppressed pro-survival signaling in the adult rats. Rapamycin administration caused a significant reduction of mTOR complex 1 phosphorylation at Ser2481 and a significant increase in levels of autophagy markers such as microtubule-associated protein-1 light chain-3 (LC3), beclin-1, sequestosome-1/p62, unc-51-like kinase 1 (ULK1). In addition, rapamycin induced the activation of autophagy that further activated p-PI3K, p-Akt1 (Ser473), and p-CREB (Ser183) expression in Aβ1-42-treated rats. The activated autophagy markedly reversed Aβ1-42-induced impaired redox homeostasis by decreasing the levels of prooxidants-ROS generation, intracellular Ca(2+) flux and LPO, and increasing the levels of antioxidants-SOD, catalase, and GSH. The activated autophagy also provided significant neuroprotection against Aβ1-42-induced synaptic dysfunction by increasing the expression of synapsin-I, synaptophysin, and PSD95; and neurotransmission dysfunction by increasing the levels of CHRM2, DAD2 receptor, NMDA receptor, and AMPA receptor; and ultimately improved cognitive ability in rats. Wortmannin administration significantly reduced the expression of autophagy markers, p-PI3K, p-Akt1, and p-CREB, as well as the autophagy mediated neuroprotective effect. Our study demonstrate that autophagy can be an integrated part of pro-survival (PI3K/Akt1/mTOR/CREB) signaling and autophagic activation restores the oxidative defense mechanism(s), neurodegenerative damages, and maintains the integrity of synapse and neurotransmission in rat model of AD.

X Demographics

X Demographics

The data shown below were collected from the profiles of 8 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 101 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Spain 1 <1%
Unknown 100 99%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 17 17%
Student > Bachelor 15 15%
Researcher 9 9%
Student > Doctoral Student 6 6%
Student > Master 6 6%
Other 14 14%
Unknown 34 34%
Readers by discipline Count As %
Neuroscience 14 14%
Biochemistry, Genetics and Molecular Biology 12 12%
Agricultural and Biological Sciences 10 10%
Medicine and Dentistry 10 10%
Pharmacology, Toxicology and Pharmaceutical Science 7 7%
Other 8 8%
Unknown 40 40%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 14. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 25 March 2023.
All research outputs
#2,599,709
of 25,554,853 outputs
Outputs from Molecular Neurobiology
#277
of 3,989 outputs
Outputs of similar age
#42,623
of 329,127 outputs
Outputs of similar age from Molecular Neurobiology
#12
of 129 outputs
Altmetric has tracked 25,554,853 research outputs across all sources so far. Compared to these this one has done well and is in the 89th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 3,989 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.4. This one has done particularly well, scoring higher than 92% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 329,127 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 86% of its contemporaries.
We're also able to compare this research output to 129 others from the same source and published within six weeks on either side of this one. This one has done particularly well, scoring higher than 91% of its contemporaries.