↓ Skip to main content

HNF-4alpha Negatively Regulates Hepcidin Expression Through BMPR1A in HepG2 Cells

Overview of attention for article published in Biological Trace Element Research, September 2016
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
4 Dimensions

Readers on

mendeley
15 Mendeley
Title
HNF-4alpha Negatively Regulates Hepcidin Expression Through BMPR1A in HepG2 Cells
Published in
Biological Trace Element Research, September 2016
DOI 10.1007/s12011-016-0846-5
Pubmed ID
Authors

Wencai Shi, Heyang Wang, Xuan Zheng, Xin Jiang, Zheng Xu, Hui Shen, Min Li

Abstract

Hepcidin synthesis is reported to be inadequate according to the body iron store in patients with non-alcoholic fatty liver disease (NAFLD) undergoing hepatic iron overload (HIO). However, the underlying mechanisms remain unclear. We hypothesize that hepatocyte nuclear factor-4α (HNF-4α) may negatively regulate hepcidin expression and contribute to hepcidin deficiency in NAFLD patients. The effect of HNF-4α on hepcidin expression was observed by transfecting specific HNF-4α small interfering RNA (siRNA) or plasmids into HepG2 cells. Both direct and indirect mechanisms involved in the regulation of HNF-4α on hepcidin were detected by real-time PCR, Western blotting, chromatin immunoprecipitation (chIP), and reporter genes. It was found that HNF-4α suppressed hepcidin messenger RNA (mRNA) and protein expressions in HepG2 cells, and this suppressive effect was independent of the potential HNF-4α response elements. Phosphorylation of SMAD1 but not STAT3 was inactivated by HNF-4α, and the SMAD4 response element was found essential to HNF-4α-induced hepcidin reduction. Neither inhibitory SMADs, SMAD6, and SMAD7 nor BMPR ligands, BMP2, BMP4, BMP6, and BMP7 were regulated by HNF-4α in HepG2 cells. BMPR1A, but not BMPR1B, BMPR2, ActR2A, ActR2B, or HJV, was decreased by HNF-4α, and HNF4α-knockdown-induced stimulation of hepcidin could be entirely blocked when BMPR1A was interfered with at the same time. In conclusion, the present study suggests that HNF-4α has a suppressive effect on hepcidin expression by inactivating the BMP pathway, specifically via BMPR1A, in HepG2 cells.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 15 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 15 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 3 20%
Student > Ph. D. Student 3 20%
Other 2 13%
Researcher 2 13%
Professor > Associate Professor 1 7%
Other 1 7%
Unknown 3 20%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 5 33%
Medicine and Dentistry 4 27%
Pharmacology, Toxicology and Pharmaceutical Science 1 7%
Nursing and Health Professions 1 7%
Materials Science 1 7%
Other 0 0%
Unknown 3 20%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 24 September 2016.
All research outputs
#20,342,896
of 22,889,074 outputs
Outputs from Biological Trace Element Research
#1,577
of 2,031 outputs
Outputs of similar age
#279,282
of 321,669 outputs
Outputs of similar age from Biological Trace Element Research
#17
of 23 outputs
Altmetric has tracked 22,889,074 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 2,031 research outputs from this source. They receive a mean Attention Score of 4.7. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 321,669 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 23 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.