↓ Skip to main content

Surface degradation and nanoparticle release of a commercial nanosilica/polyurethane coating under UV exposure

Overview of attention for article published in Journal of Coatings Technology and Research, July 2016
Altmetric Badge

About this Attention Score

  • In the top 5% of all research outputs scored by Altmetric
  • One of the highest-scoring outputs from this source (#1 of 292)
  • High Attention Score compared to outputs of the same age (97th percentile)
  • High Attention Score compared to outputs of the same age and source (85th percentile)

Mentioned by

news
10 news outlets
blogs
3 blogs
twitter
1 X user
facebook
1 Facebook page

Citations

dimensions_citation
24 Dimensions

Readers on

mendeley
44 Mendeley
Title
Surface degradation and nanoparticle release of a commercial nanosilica/polyurethane coating under UV exposure
Published in
Journal of Coatings Technology and Research, July 2016
DOI 10.1007/s11998-016-9796-2
Pubmed ID
Authors

Deborah S. Jacobs, Sin-Ru Huang, Yu-Lun Cheng, Savelas A. Rabb, Justin M. Gorham, Peter J. Krommenhoek, Lee L. Yu, Tinh Nguyen, Lipiin Sung

Abstract

Many coatings properties such as mechanical, electrical, and ultra violet (UV) resistance are greatly enhanced by the addition of nanoparticles, which can potentially increase the use of nanocoatings for many outdoor applications. However, because polymers used in all coatings are susceptible to degradation by weathering, nanoparticles in a coating may be brought to the surface and released into the environment during the life cycle of a nanocoating. Therefore, the goal of this study is to investigate the process and mechanism of surface degradation and potential particle release from a commercial nanosilica/polyurethane coating under accelerated UV exposure. Recent research at the National Institute of Standards and Technology (NIST) has shown that the matrix in an epoxy nanocomposite undergoes photodegradation during exposure to UV radiation, resulting in surface accumulation of nanoparticles and subsequent release from the composite. In this study, specimens of a commercial polyurethane (PU) coating, to which a 5 mass % surface treated silica nanoparticles solution was added, were exposed to well-controlled, accelerated UV environments. The nanocoating surface morphological changes and surface accumulation of nanoparticles as a function of UV exposure were measured, along with chemical change and mass loss using a variety of techniques. Particles from the surface of the coating were collected using a simulated rain process developed at NIST, and the collected runoff specimens were measured using inductively coupled plasma-optical emission spectroscopy (ICP-OES) to determine the amount of silicon released from the nanocoatings. The results demonstrated that the added silica nanoparticle solution decreased the photodegradation rate (i.e., stabilization) of the commercial PU nanocoating. Although the degradation was slower than the previous nanosilica epoxy model system, the degradation of the PU matrix resulted in accumulation of silica nanoparticles on the nanocoating surface and release to the environment by simulated rain. These experimental data are valuable for developing models to predict the long-term release of nanosilica from commercial PU nanocoatings used outdoors and, therefore, are essential for assessing the health and environmental risks during the service life of exterior PU nanocoatings.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 44 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 44 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 12 27%
Student > Master 6 14%
Student > Bachelor 5 11%
Student > Ph. D. Student 5 11%
Student > Doctoral Student 2 5%
Other 5 11%
Unknown 9 20%
Readers by discipline Count As %
Environmental Science 8 18%
Chemistry 7 16%
Materials Science 7 16%
Engineering 4 9%
Physics and Astronomy 3 7%
Other 4 9%
Unknown 11 25%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 97. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 28 October 2016.
All research outputs
#400,467
of 23,975,976 outputs
Outputs from Journal of Coatings Technology and Research
#1
of 292 outputs
Outputs of similar age
#8,531
of 360,234 outputs
Outputs of similar age from Journal of Coatings Technology and Research
#1
of 7 outputs
Altmetric has tracked 23,975,976 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 98th percentile: it's in the top 5% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 292 research outputs from this source. They receive a mean Attention Score of 3.8. This one has done particularly well, scoring higher than 99% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 360,234 tracked outputs that were published within six weeks on either side of this one in any source. This one has done particularly well, scoring higher than 97% of its contemporaries.
We're also able to compare this research output to 7 others from the same source and published within six weeks on either side of this one. This one has scored higher than all of them