↓ Skip to main content

Climate drives adaptive genetic responses associated with survival in big sagebrush (Artemisia tridentata)

Overview of attention for article published in Evolutionary Applications, March 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
3 X users
facebook
1 Facebook page

Citations

dimensions_citation
29 Dimensions

Readers on

mendeley
64 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Climate drives adaptive genetic responses associated with survival in big sagebrush (Artemisia tridentata)
Published in
Evolutionary Applications, March 2017
DOI 10.1111/eva.12440
Pubmed ID
Authors

Lindsay Chaney, Bryce A. Richardson, Matthew J. Germino

Abstract

A genecological approach was used to explore genetic variation for survival in Artemisia tridentata (big sagebrush). Artemisia tridentata is a widespread and foundational shrub species in western North America. This species has become extremely fragmented, to the detriment of dependent wildlife, and efforts to restore it are now a land management priority. Common-garden experiments were established at three sites with seedlings from 55 source-populations. Populations included each of the three predominant subspecies, and cytotype variations. Survival was monitored for 5 years to assess differences in survival between gardens and populations. We found evidence of adaptive genetic variation for survival. Survival within gardens differed by source-population and a substantial proportion of this variation was explained by seed climate of origin. Plants from areas with the coldest winters had the highest levels of survival, while populations from warmer and drier sites had the lowest levels of survival. Survival was lowest, 36%, in the garden that was prone to the lowest minimum temperatures. These results suggest the importance of climatic driven genetic differences and their effect on survival. Understanding how genetic variation is arrayed across the landscape, and its association with climate can greatly enhance the success of restoration and conservation.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 64 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 64 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 20 31%
Student > Master 11 17%
Student > Ph. D. Student 9 14%
Student > Doctoral Student 3 5%
Other 3 5%
Other 5 8%
Unknown 13 20%
Readers by discipline Count As %
Agricultural and Biological Sciences 25 39%
Environmental Science 20 31%
Biochemistry, Genetics and Molecular Biology 3 5%
Computer Science 1 2%
Immunology and Microbiology 1 2%
Other 1 2%
Unknown 13 20%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 14 April 2017.
All research outputs
#16,722,190
of 25,374,917 outputs
Outputs from Evolutionary Applications
#1,248
of 1,578 outputs
Outputs of similar age
#199,332
of 323,699 outputs
Outputs of similar age from Evolutionary Applications
#13
of 20 outputs
Altmetric has tracked 25,374,917 research outputs across all sources so far. This one is in the 32nd percentile – i.e., 32% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,578 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 13.6. This one is in the 18th percentile – i.e., 18% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 323,699 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 35th percentile – i.e., 35% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 20 others from the same source and published within six weeks on either side of this one. This one is in the 35th percentile – i.e., 35% of its contemporaries scored the same or lower than it.