↓ Skip to main content

Oxygen tension modulates the effects of TNFα in compressed chondrocytes

Overview of attention for article published in Inflammation Research, September 2016
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 X users
facebook
2 Facebook pages

Citations

dimensions_citation
6 Dimensions

Readers on

mendeley
32 Mendeley
Title
Oxygen tension modulates the effects of TNFα in compressed chondrocytes
Published in
Inflammation Research, September 2016
DOI 10.1007/s00011-016-0991-5
Pubmed ID
Authors

R. K. Tilwani, S. Vessillier, B. Pingguan-Murphy, D. A. Lee, D. L. Bader, T. T. Chowdhury

Abstract

Oxygen tension and biomechanical signals are factors that regulate inflammatory mechanisms in chondrocytes. We examined whether low oxygen tension influenced the cells response to TNFα and dynamic compression. Chondrocyte/agarose constructs were treated with varying concentrations of TNFα (0.1-100 ng/ml) and cultured at 5 and 21 % oxygen tension for 48 h. In separate experiments, constructs were subjected to dynamic compression (15 %) and treated with TNFα (10 ng/ml) and/or L-NIO (1 mM) at 5 and 21 % oxygen tension using an ex vivo bioreactor for 48 h. Markers for catabolic activity (NO, PGE2) and tissue remodelling (GAG, MMPs) were quantified by biochemical assay. ADAMTS-5 and MMP-13 expression were examined by real-time qPCR. 2-way ANOVA and a post hoc Bonferroni-corrected t test were used to analyse data. TNFα dose-dependently increased NO, PGE2 and MMP activity (all p < 0.001) and induced MMP-13 (p < 0.05) and ADAMTS-5 gene expression (pp < 0.01) with values greater at 5 % oxygen tension than 21 %. The induction of catabolic mediators by TNFα was reduced by dynamic compression and/or L-NIO (all p < 0.001), with a greater inhibition observed at 5% than 21 %. The stimulation of GAG synthesis by dynamic compression was greater at 21 % than 5 % oxygen tension and this response was reduced with TNFα or reversed with L-NIO. The present findings revealed that TNFα increased production of NO, PGE2 and MMP activity at 5 % oxygen tension. The effects induced by TNFα were reduced by dynamic compression and/or the NOS inhibitor, linking both types of stimuli to reparative activities. Future therapeutics should develop oxygen-sensitive antagonists which are directed to interfering with the TNFα-induced pathways.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 32 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 32 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 7 22%
Student > Ph. D. Student 7 22%
Other 2 6%
Researcher 2 6%
Student > Master 2 6%
Other 4 13%
Unknown 8 25%
Readers by discipline Count As %
Engineering 8 25%
Biochemistry, Genetics and Molecular Biology 6 19%
Medicine and Dentistry 5 16%
Agricultural and Biological Sciences 3 9%
Business, Management and Accounting 1 3%
Other 0 0%
Unknown 9 28%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 10 October 2016.
All research outputs
#14,273,624
of 22,893,031 outputs
Outputs from Inflammation Research
#571
of 957 outputs
Outputs of similar age
#183,192
of 321,008 outputs
Outputs of similar age from Inflammation Research
#6
of 10 outputs
Altmetric has tracked 22,893,031 research outputs across all sources so far. This one is in the 35th percentile – i.e., 35% of other outputs scored the same or lower than it.
So far Altmetric has tracked 957 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.6. This one is in the 38th percentile – i.e., 38% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 321,008 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 40th percentile – i.e., 40% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 10 others from the same source and published within six weeks on either side of this one. This one has scored higher than 4 of them.