↓ Skip to main content

How Does the dGEMRIC Index Change After Surgical Treatment for FAI? A Prospective Controlled Study: Preliminary Results

Overview of attention for article published in Clinical Orthopaedics & Related Research, October 2016
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (90th percentile)
  • High Attention Score compared to outputs of the same age and source (94th percentile)

Mentioned by

twitter
32 X users
facebook
1 Facebook page

Citations

dimensions_citation
43 Dimensions

Readers on

mendeley
110 Mendeley
Title
How Does the dGEMRIC Index Change After Surgical Treatment for FAI? A Prospective Controlled Study: Preliminary Results
Published in
Clinical Orthopaedics & Related Research, October 2016
DOI 10.1007/s11999-016-5098-3
Pubmed ID
Authors

Florian Schmaranzer, Pascal C. Haefeli, Markus S. Hanke, Emanuel F. Liechti, Stefan F. Werlen, Klaus A. Siebenrock, Moritz Tannast

Abstract

Delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) allows an objective, noninvasive, and longitudinal quantification of biochemical cartilage properties. Although dGEMRIC has been used to monitor the course of cartilage degeneration after periacetabular osteotomy (PAO) for correction of hip dysplasia, such longitudinal data are currently lacking for femoroacetabular impingement (FAI). (1) How does the mean acetabular and femoral dGEMRIC index change after surgery for FAI at 1-year followup compared with a similar group of patients with FAI treated without surgery? (2) Does the regional distribution of the acetabular and femoral dGEMRIC index change for the two groups over time? (3) Is there a correlation between the baseline dGEMRIC index and the change of patient-reported outcome measures (PROMs) at 1-year followup? (4) Among those treated surgically, can dGEMRIC indices distinguish between intact and degenerated cartilage? We performed a prospective, comparative, nonrandomized, longitudinal study. At the time of enrollment, the patients' decision whether to undergo surgery or choose nonoperative treatment was not made yet. Thirty-nine patients (40 hips) who underwent either joint-preserving surgery for FAI (20 hips) or nonoperative treatment (20 hips) were included. The two groups did not differ regarding Tönnis osteoarthritis score, preoperative PROMs, or baseline dGEMRIC indices. There were more women (60% versus 30%, p = 0.003) in the nonoperative group and patients were older (36 ± 8 years versus 30 ± 8 years, p = 0.026) and had lower alpha angles (65° ± 10° versus 73° ± 12°, p = 0.022) compared with the operative group. We used a 3.0-T scanner and a three-dimensional dual flip-angle gradient-echo technique for the dGEMRIC technique for the baseline and the 1-year followup measurements. dGEMRIC indices of femoral and acetabular cartilage were measured separately on the initial and followup radial dGEMRIC reformats in direct comparison with morphologic radial images. Regions of interest were placed manually peripherally and centrally within the cartilage based on anatomic landmarks at the clockface positions. The WOMAC, the Hip disability and Osteoarthritis Outcome Score, and the modified Harris hip score were used as PROMs. Among those treated surgically, the intraoperative damage according to the Beck grading was recorded and compared with the baseline dGEMRIC indices. Although both the operative and the nonoperative groups experienced decreased dGEMRIC indices, the declines were more pronounced in the operative group (-96 ± 112 ms versus -16 ± 101 ms on the acetabular side and -96 ± 123 ms versus -21 ± 83 ms on the femoral side in the operative and nonoperative groups, respectively; p < 0.001 for both). Patients undergoing hip arthroscopy and surgical hip dislocation experienced decreased dGEMRIC indices; the decline in femoral dGEMRIC indices was more pronounced in hips after surgical hip dislocation (-120 ± 137 ms versus -61 ± 89 ms, p = 0.002). In the operative group a decline in dGEMRIC indices was observed in 43 of 44 regions over time. In the nonoperative group a decline in dGEMRIC indices was observed in four of 44 regions over time. The strongest correlation among patients treated surgically was found between the change in WOMAC and baseline dGEMRIC indices for the entire joint (R = 0.788, p < 0.001). Among those treated nonoperatively, no correlation between baseline dGEMRIC indices and change in PROMs was found. In the posterosuperior quadrant, the dGEMRIC index was higher for patients with intact cartilage compared with hips with chondral lesions (592 ± 203 ms versus 444 ± 205 ms, p < 0.001). We found a decline in acetabular, femoral, and regional dGEMRIC indices for the surgically treated group at 1-year followup despite an improvement in all PROMs. We observed a similar but less pronounced decrease in the dGEMRIC index in symptomatic patients without surgical treatment indicating continuous cartilage degeneration. Although treatment of FAI is intended to alter the forces acting across the hip by eliminating impingement, its effects on cartilage biology are not clear. dGEMRIC provides a noninvasive method of assessing these effects. Longer term studies will be needed to determine whether the matrix changes of the bradytrophic cartilage seen here are permanent or clinically important. Level II, therapeutic study.

X Demographics

X Demographics

The data shown below were collected from the profiles of 32 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 110 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 110 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 17 15%
Student > Bachelor 13 12%
Researcher 11 10%
Student > Ph. D. Student 8 7%
Student > Doctoral Student 8 7%
Other 26 24%
Unknown 27 25%
Readers by discipline Count As %
Medicine and Dentistry 53 48%
Nursing and Health Professions 8 7%
Sports and Recreations 4 4%
Biochemistry, Genetics and Molecular Biology 3 3%
Engineering 3 3%
Other 10 9%
Unknown 29 26%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 20. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 02 November 2016.
All research outputs
#1,850,574
of 25,371,288 outputs
Outputs from Clinical Orthopaedics & Related Research
#233
of 7,298 outputs
Outputs of similar age
#32,109
of 327,009 outputs
Outputs of similar age from Clinical Orthopaedics & Related Research
#6
of 101 outputs
Altmetric has tracked 25,371,288 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 92nd percentile: it's in the top 10% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 7,298 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.8. This one has done particularly well, scoring higher than 96% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 327,009 tracked outputs that were published within six weeks on either side of this one in any source. This one has done particularly well, scoring higher than 90% of its contemporaries.
We're also able to compare this research output to 101 others from the same source and published within six weeks on either side of this one. This one has done particularly well, scoring higher than 94% of its contemporaries.