↓ Skip to main content

A method for predicting individual residue contributions to enzyme specificity and binding-site energies, and its application to MTH1

Overview of attention for article published in Journal of Molecular Modeling, October 2016
Altmetric Badge

About this Attention Score

  • Above-average Attention Score compared to outputs of the same age and source (61st percentile)

Mentioned by

twitter
2 X users

Citations

dimensions_citation
15 Dimensions

Readers on

mendeley
24 Mendeley
Title
A method for predicting individual residue contributions to enzyme specificity and binding-site energies, and its application to MTH1
Published in
Journal of Molecular Modeling, October 2016
DOI 10.1007/s00894-016-3119-5
Pubmed ID
Authors

James J. P. Stewart

Abstract

A new method for predicting the energy contributions to substrate binding and to specificity has been developed. Conventional global optimization methods do not permit the subtle effects responsible for these properties to be modeled with sufficient precision to allow confidence to be placed in the results, but by making simple alterations to the model, the precisions of the various energies involved can be improved from about ±2 kcal mol(-1) to ±0.1 kcal mol(-1). This technique was applied to the oxidized nucleotide pyrophosphohydrolase enzyme MTH1. MTH1 is unusual in that the binding and reaction sites are well separated-an advantage from a computational chemistry perspective, as it allows the energetics involved in docking to be modeled without the need to consider any issues relating to reaction mechanisms. In this study, two types of energy terms were investigated: the noncovalent interactions between the binding site and the substrate, and those responsible for discriminating between the oxidized nucleotide 8-oxo-dGTP and the normal dGTP. Both of these were investigated using the semiempirical method PM7 in the program MOPAC. The contributions of the individual residues to both the binding energy and the specificity of MTH1 were calculated by simulating the effect of mutations. Where comparisons were possible, all calculated results were in agreement with experimental observations. This technique provides fresh insight into the binding mechanism that enzymes use for discriminating between possible substrates.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 24 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 24 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 5 21%
Professor 4 17%
Researcher 3 13%
Student > Bachelor 2 8%
Student > Postgraduate 2 8%
Other 3 13%
Unknown 5 21%
Readers by discipline Count As %
Chemistry 6 25%
Biochemistry, Genetics and Molecular Biology 5 21%
Agricultural and Biological Sciences 3 13%
Chemical Engineering 1 4%
Pharmacology, Toxicology and Pharmaceutical Science 1 4%
Other 2 8%
Unknown 6 25%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 12 October 2016.
All research outputs
#15,387,502
of 22,893,031 outputs
Outputs from Journal of Molecular Modeling
#411
of 818 outputs
Outputs of similar age
#201,635
of 319,894 outputs
Outputs of similar age from Journal of Molecular Modeling
#5
of 13 outputs
Altmetric has tracked 22,893,031 research outputs across all sources so far. This one is in the 22nd percentile – i.e., 22% of other outputs scored the same or lower than it.
So far Altmetric has tracked 818 research outputs from this source. They receive a mean Attention Score of 2.7. This one is in the 39th percentile – i.e., 39% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 319,894 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 28th percentile – i.e., 28% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 13 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 61% of its contemporaries.