↓ Skip to main content

Lipopolysaccharide and Curcumin Co-Stimulation Potentiates Olfactory Ensheathing Cell Phagocytosis Via Enhancing Their Activation

Overview of attention for article published in Neurotherapeutics, April 2017
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • Good Attention Score compared to outputs of the same age (73rd percentile)
  • High Attention Score compared to outputs of the same age and source (81st percentile)

Mentioned by

news
1 news outlet

Citations

dimensions_citation
28 Dimensions

Readers on

mendeley
27 Mendeley
Title
Lipopolysaccharide and Curcumin Co-Stimulation Potentiates Olfactory Ensheathing Cell Phagocytosis Via Enhancing Their Activation
Published in
Neurotherapeutics, April 2017
DOI 10.1007/s13311-016-0485-8
Pubmed ID
Authors

Ding-Jun Hao, Cuicui Liu, Lingling Zhang, Bo Chen, Qian Zhang, Rui Zhang, Jing An, Jingjing Zhao, Mingmei Wu, Yi Wang, Alfred Simental, Baorong He, Hao Yang

Abstract

The gradual deterioration following central nervous system (CNS) injuries or neurodegenerative disorders is usually accompanied by infiltration of degenerated and apoptotic neural tissue debris. A rapid and efficient clearance of these deteriorated cell products is of pivotal importance in creating a permissive environment for regeneration of those damaged neurons. Our recent report revealed that the phagocytic activity of olfactory ensheathing cells (OECs) can make a substantial contribution to neuronal growth in such a hostile environment. However, little is known about how to further increase the ability of OECs in phagocytosing deleterious products. Here, we used an in vitro model of primary cells to investigate the effects of lipopolysaccharide (LPS) and curcumin (CCM) co-stimulation on phagocytic activity of OECs and the possible underlying mechanisms. Our results showed that co-stimulation using LPS and CCM can significantly enhance the activation of OECs, displaying a remarkable up-regulation in chemokine (C-X-C motif) ligand 1, chemokine (C-X-C motif) ligand 2, tumor necrosis factor-α, and Toll-like receptor 4, increased OEC proliferative activity, and improved phagocytic capacity compared with normal and LPS- or CCM-treated OECs. More importantly, this potentiated phagocytosis activity greatly facilitated neuronal growth under hostile culture conditions. Moreover, the up-regulation of transglutaminase-2 and phosphatidylserine receptor in OECs activated by LPS and CCM co-stimulation are likely responsible for mechanisms underlying the observed cellular events, because cystamine (a specific inhibitor of transglutaminase-2) and neutrophil elastase (a cleavage enzyme of phosphatidylserine receptor) can effectively abrogate all the positive effects of OECs, including phagocytic capacity and promotive effects on neuronal growth. This study provides an alternative strategy for the repair of traumatic nerve injury and neurologic diseases with the application of OECs in combination with LPS and CCM.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 27 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Ireland 1 4%
Unknown 26 96%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 6 22%
Student > Master 6 22%
Student > Bachelor 2 7%
Researcher 2 7%
Professor > Associate Professor 2 7%
Other 3 11%
Unknown 6 22%
Readers by discipline Count As %
Medicine and Dentistry 4 15%
Agricultural and Biological Sciences 4 15%
Neuroscience 3 11%
Engineering 3 11%
Nursing and Health Professions 2 7%
Other 5 19%
Unknown 6 22%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 7. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 21 October 2016.
All research outputs
#4,835,823
of 25,373,627 outputs
Outputs from Neurotherapeutics
#495
of 1,308 outputs
Outputs of similar age
#79,502
of 323,919 outputs
Outputs of similar age from Neurotherapeutics
#3
of 16 outputs
Altmetric has tracked 25,373,627 research outputs across all sources so far. Compared to these this one has done well and is in the 79th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 1,308 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 18.2. This one has gotten more attention than average, scoring higher than 58% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 323,919 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 73% of its contemporaries.
We're also able to compare this research output to 16 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 81% of its contemporaries.