↓ Skip to main content

Experimental Climate Change Modifies Degradative Succession in Boreal Peatland Fungal Communities

Overview of attention for article published in Microbial Ecology, October 2016
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (87th percentile)
  • High Attention Score compared to outputs of the same age and source (92nd percentile)

Mentioned by

blogs
1 blog
twitter
10 X users
facebook
3 Facebook pages

Citations

dimensions_citation
32 Dimensions

Readers on

mendeley
52 Mendeley
Title
Experimental Climate Change Modifies Degradative Succession in Boreal Peatland Fungal Communities
Published in
Microbial Ecology, October 2016
DOI 10.1007/s00248-016-0875-9
Pubmed ID
Authors

Asma Asemaninejad, R. Greg Thorn, Zoë Lindo

Abstract

Peatlands play an important role in global climate change through sequestration of atmospheric CO2. Climate-driven changes in the structure of fungal communities in boreal peatlands that favor saprotrophic fungi can substantially impact carbon dynamics and nutrient cycling in these crucial ecosystems. In a mesocosm study using a full factorial design, 100 intact peat monoliths, complete with living Sphagnum and above-ground vascular vegetation, were subjected to three climate change variables (increased temperature, reduced water table, and elevated CO2 concentrations). Peat litterbags were placed in mesocosms, and fungal communities in litterbags were monitored over 12 months to assess the impacts of climate change variables on peat-inhabiting fungi. Changes in fungal richness, diversity, and community composition were assessed using Illumina MiSeq sequencing of ribosomal DNA (rDNA). While general fungal richness reduced under warming conditions, Ascomycota exhibited higher diversity under increased temperature treatments over the course of the experiment. Both increased temperature and lowered water table position drove shifts in fungal community composition with a strong positive effect on endophytic and mycorrhizal fungi (including one operational taxonomic unit (OTU) tentatively identified as Barrenia panicia) and different groups of saprotrophs identified as Mortierella, Galerina, and Mycena. These shifts were observed during a predicted degradative succession in the decomposer community as different carbon substrates became available. Since fungi play a central role in peatland communities, increased abundances of saprotrophic fungi under warming conditions, at the expense of reduced fungal richness overall, may increase decomposition rates under future climate scenarios and could potentially aggravate the impacts of climate change.

X Demographics

X Demographics

The data shown below were collected from the profiles of 10 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 52 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 52 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 11 21%
Researcher 10 19%
Student > Master 7 13%
Student > Bachelor 7 13%
Professor > Associate Professor 2 4%
Other 3 6%
Unknown 12 23%
Readers by discipline Count As %
Environmental Science 17 33%
Agricultural and Biological Sciences 16 31%
Earth and Planetary Sciences 2 4%
Biochemistry, Genetics and Molecular Biology 1 2%
Immunology and Microbiology 1 2%
Other 1 2%
Unknown 14 27%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 15. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 15 August 2017.
All research outputs
#2,126,161
of 22,893,031 outputs
Outputs from Microbial Ecology
#107
of 2,060 outputs
Outputs of similar age
#39,269
of 319,595 outputs
Outputs of similar age from Microbial Ecology
#4
of 51 outputs
Altmetric has tracked 22,893,031 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 90th percentile: it's in the top 10% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 2,060 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.4. This one has done particularly well, scoring higher than 94% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 319,595 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 87% of its contemporaries.
We're also able to compare this research output to 51 others from the same source and published within six weeks on either side of this one. This one has done particularly well, scoring higher than 92% of its contemporaries.