↓ Skip to main content

Complexes of the antimicrobial ciprofloxacin with soil, peat, and aquatic humic substances

Overview of attention for article published in Environmental Toxicology & Chemistry, May 2013
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • High Attention Score compared to outputs of the same age and source (81st percentile)

Mentioned by

twitter
2 X users
facebook
1 Facebook page

Citations

dimensions_citation
66 Dimensions

Readers on

mendeley
71 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Complexes of the antimicrobial ciprofloxacin with soil, peat, and aquatic humic substances
Published in
Environmental Toxicology & Chemistry, May 2013
DOI 10.1002/etc.2214
Pubmed ID
Authors

Ludmilla Aristilde, Garrison Sposito

Abstract

Natural organic matter (NOM) is implicated in the binding of antibiotics by particles in soils and waters. The authors' previous computational study revealed structural rearrangement of both hydrophilic and hydrophobic moieties of NOM to favor H-bonding and other intermolecular interactions, as well as both competition with ion-exchange reactions and bridging interactions by NOM-bound divalent cations. The importance of these interactions was investigated using fluorescence-quenching spectroscopy to study the adsorption of ciprofloxacin (Cipro), a fluoroquinolone antibiotic, on 4 reference humic substances (HSs): Elliott soil humic acid (HA), Pahokee peat HA, and Suwannee river HA and fulvic acid. A simple affinity spectrum HS model was developed to characterize the cation-exchange capacity and the amount of H-bond donor moieties as a function of pH. The adsorption results stress the influence of both pH conditions and the type of HS: both soil HA and peat HA exhibited up to 3 times higher sorption capacity than the aquatic HS at pH ≥ 6, normalizing to the aromatic C content accounted for the differences among the terrestrial HS, and increasing the concentration of divalent cations led to a decrease in adsorption on aquatic HA but not on soil HA. In addition, the pH-dependent speciation models of the Cipro-HS complexes illustrate an increase in complexation due to an increase in deprotonation of HS ligands with increasing pH and, at circumneutral and alkaline pH, enhanced complexation of zwitterionic Cipro only in the presence of soil HA and peat HA. The findings of the present study imply that, in addition to electrostatic interactions, van der Waals interactions as facilitated by aromatic structures and H-bond donating moieties in terrestrial HS may facilitate a favorable binding environment. Environ Toxicol Chem 2013;32:1467-1478. © 2013 SETAC.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 71 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Spain 1 1%
United States 1 1%
Unknown 69 97%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 17 24%
Researcher 10 14%
Student > Master 10 14%
Student > Doctoral Student 5 7%
Student > Bachelor 4 6%
Other 12 17%
Unknown 13 18%
Readers by discipline Count As %
Environmental Science 23 32%
Chemistry 14 20%
Agricultural and Biological Sciences 4 6%
Biochemistry, Genetics and Molecular Biology 3 4%
Materials Science 3 4%
Other 10 14%
Unknown 14 20%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 08 March 2013.
All research outputs
#16,063,069
of 25,394,764 outputs
Outputs from Environmental Toxicology & Chemistry
#3,876
of 5,615 outputs
Outputs of similar age
#120,461
of 207,093 outputs
Outputs of similar age from Environmental Toxicology & Chemistry
#17
of 90 outputs
Altmetric has tracked 25,394,764 research outputs across all sources so far. This one is in the 34th percentile – i.e., 34% of other outputs scored the same or lower than it.
So far Altmetric has tracked 5,615 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.9. This one is in the 26th percentile – i.e., 26% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 207,093 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 39th percentile – i.e., 39% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 90 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 81% of its contemporaries.