↓ Skip to main content

Implementation and evaluation of amyloidosis subtyping by laser-capture microdissection and tandem mass spectrometry

Overview of attention for article published in Clinical Proteomics, October 2016
Altmetric Badge

About this Attention Score

  • In the top 5% of all research outputs scored by Altmetric
  • One of the highest-scoring outputs from this source (#6 of 287)
  • High Attention Score compared to outputs of the same age (93rd percentile)
  • High Attention Score compared to outputs of the same age and source (99th percentile)

Mentioned by

news
4 news outlets
twitter
7 X users

Citations

dimensions_citation
60 Dimensions

Readers on

mendeley
42 Mendeley
Title
Implementation and evaluation of amyloidosis subtyping by laser-capture microdissection and tandem mass spectrometry
Published in
Clinical Proteomics, October 2016
DOI 10.1186/s12014-016-9133-x
Pubmed ID
Authors

Peter Mollee, Samuel Boros, Dorothy Loo, Jayde E. Ruelcke, Vanessa A. Lakis, Kim-Anh Lê Cao, Patricia Renaut, Michelle M. Hill

Abstract

Correct identification of the amyloidosis-causing protein is crucial for clinical management. Recently the Mayo Clinic reported laser-capture microdissection (LCM) with liquid chromatography-coupled tandem mass spectrometry (MS/MS) as a new diagnostic tool for amyloid diagnosis. Here, we report an independent implementation of this proteomic diagnostics method at the Princess Alexandra Hospital Amyloidosis Centre in Brisbane, Australia. From 2010 to 2014, 138 biopsies received from 35 different organ sites were analysed by LCM-MS/MS using Congo Red staining to visualise amyloid deposits. There was insufficient tissue in the block for LCM for 7 cases. An amyloid forming protein was ultimately identified in 121 out of 131 attempted cases (94 %). Of the 121 successful cases, the Mayo Clinic amyloid proteomic signature (at least two of Serum Amyloid P, ApoE and ApoA4) was detected in 92 (76 %). Low levels of additional amyloid forming proteins were frequently identified with the main amyloid forming protein, which may reflect co-deposition of fibrils. Furthermore, vitronectin and clusterin were frequently identified in our samples. Adding vitronectin to the amyloid signature increases the number of positive cases, suggesting a potential 4th protein for the signature. In terms of clinical impact, amyloid typing by immunohistochemistry was attempted in 88 cases, reported as diagnostic in 39, however, 5 were subsequently revealed by proteomic analysis to be incorrect. Overall, the referring clinician's diagnosis of amyloid subtype was altered by proteomic analysis in 24 % of cases. While LCM-MS/MS was highly robust in protein identification, clinical information was still required for subtyping, particularly for systemic versus localized amyloidosis. This study reports the independent implementation and evaluation of a proteomics-based diagnostic for amyloidosis subtyping. Our results support LCM-MS/MS as a powerful new diagnostic technique for amyloidosis, but also identified some challenges and further development opportunities.

X Demographics

X Demographics

The data shown below were collected from the profiles of 7 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 42 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 42 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 8 19%
Student > Ph. D. Student 7 17%
Student > Bachelor 6 14%
Student > Doctoral Student 3 7%
Student > Postgraduate 3 7%
Other 8 19%
Unknown 7 17%
Readers by discipline Count As %
Medicine and Dentistry 16 38%
Biochemistry, Genetics and Molecular Biology 7 17%
Chemistry 5 12%
Veterinary Science and Veterinary Medicine 2 5%
Agricultural and Biological Sciences 2 5%
Other 4 10%
Unknown 6 14%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 34. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 29 November 2016.
All research outputs
#1,038,645
of 23,301,510 outputs
Outputs from Clinical Proteomics
#6
of 287 outputs
Outputs of similar age
#20,888
of 315,594 outputs
Outputs of similar age from Clinical Proteomics
#1
of 14 outputs
Altmetric has tracked 23,301,510 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 95th percentile: it's in the top 5% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 287 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.2. This one has done particularly well, scoring higher than 98% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 315,594 tracked outputs that were published within six weeks on either side of this one in any source. This one has done particularly well, scoring higher than 93% of its contemporaries.
We're also able to compare this research output to 14 others from the same source and published within six weeks on either side of this one. This one has done particularly well, scoring higher than 99% of its contemporaries.