↓ Skip to main content

Additive impacts of experimental climate change increase risk to an ectotherm at the Arctic's edge

Overview of attention for article published in Global Change Biology, November 2016
Altmetric Badge

About this Attention Score

  • In the top 5% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (94th percentile)
  • Good Attention Score compared to outputs of the same age and source (69th percentile)

Mentioned by

news
4 news outlets
twitter
1 X user

Citations

dimensions_citation
11 Dimensions

Readers on

mendeley
76 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Additive impacts of experimental climate change increase risk to an ectotherm at the Arctic's edge
Published in
Global Change Biology, November 2016
DOI 10.1111/gcb.13543
Pubmed ID
Authors

Jon M. Davenport, Blake R. Hossack, LeeAnn Fishback

Abstract

Globally, Arctic and Subarctic regions have experienced the greatest temperature increases during the last 30 years. These extreme changes have amplified threats to the freshwater ecosystems that dominate the landscape in many areas by altering water budgets. Several studies in temperate environments have examined the adaptive capacity of organisms to enhance our understanding of the potential repercussions of warming and associated accelerated drying for freshwater ecosystems. However, few experiments have examined these impacts in Arctic or Subarctic freshwater ecosystems, where the climate is changing most rapidly. To evaluate the capacity of a widespread ectotherm to anticipated environmental changes, we conducted a mesocosm experiment with wood frogs (Rana sylvatica) in the Canadian Subarctic. Three warming treatments were fully crossed with three drying treatments to simulate a range of predicted changes in wetland environments. We predicted wetland warming and drying would act synergistically, with water temperature partially compensating for some of the negative effects of accelerated drying. Across all drying regimes, a 1°C increase in water temperature increased the odds of survival by 1.79, and tadpoles in 52-day and 64-day hydroperiod mesocosms were 4.1-4.3 times more likely to survive to metamorphosis than tadpoles in 45-day mesocosms. For individuals who survived to metamorphosis, there was only a weak negative effect of temperature on size. As expected, increased temperatures accelerated tadpole growth through day 30 of the experiment. Our results reveal that one of the dominant herbivores in Subarctic wetlands, wood frog tadpoles, are capable of increasing their developmental rates in response to increased temperature and accelerated drying, but only in an additive manner. The strong negative effects of drying on survival, combined with lack of compensation between these two environmental drivers, suggest changes in the aquatic environment that are expected in this ecosystem will reduce mean fitness of populations across the landscape. This article is protected by copyright. All rights reserved.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 76 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 1 1%
Canada 1 1%
Unknown 74 97%

Demographic breakdown

Readers by professional status Count As %
Researcher 14 18%
Student > Ph. D. Student 12 16%
Student > Master 9 12%
Student > Bachelor 8 11%
Student > Doctoral Student 3 4%
Other 12 16%
Unknown 18 24%
Readers by discipline Count As %
Agricultural and Biological Sciences 30 39%
Environmental Science 15 20%
Unspecified 3 4%
Biochemistry, Genetics and Molecular Biology 2 3%
Nursing and Health Professions 1 1%
Other 6 8%
Unknown 19 25%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 36. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 16 May 2023.
All research outputs
#1,048,129
of 24,451,065 outputs
Outputs from Global Change Biology
#1,272
of 6,081 outputs
Outputs of similar age
#21,879
of 425,060 outputs
Outputs of similar age from Global Change Biology
#25
of 81 outputs
Altmetric has tracked 24,451,065 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 95th percentile: it's in the top 5% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 6,081 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 34.8. This one has done well, scoring higher than 79% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 425,060 tracked outputs that were published within six weeks on either side of this one in any source. This one has done particularly well, scoring higher than 94% of its contemporaries.
We're also able to compare this research output to 81 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 69% of its contemporaries.