↓ Skip to main content

Primary gene response to mechanical loading in healing rat Achilles tendons

Overview of attention for article published in Journal of Applied Physiology, March 2013
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
4 X users

Citations

dimensions_citation
41 Dimensions

Readers on

mendeley
42 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Primary gene response to mechanical loading in healing rat Achilles tendons
Published in
Journal of Applied Physiology, March 2013
DOI 10.1152/japplphysiol.01500.2012
Pubmed ID
Authors

Pernilla Eliasson, Therese Andersson, Malin Hammerman, Per Aspenberg

Abstract

Loading can stimulate tendon healing. In healing rat Achilles tendons, we have found more than 150 genes upregulated or downregulated 3 h after one loading episode. We hypothesized that these changes were preceded by a smaller number of regulatory genes and thus performed a microarray 15 min after a short loading episode, to capture the primary response to loading. We transected the Achilles tendon of 54 rats and allowed them to heal. The hind limbs were unloaded by tail-suspension during the entire experiment, except during the loading episode. The healing tendon tissue was analyzed by mechanical testing, microarray, and quantitative real-time polymerase chain reaction (qRT-PCR). Mechanical testing showed that 5 min of loading each day for 4 days created stronger tissue. The microarray analysis after one loading episode identified 15 regulated genes. Ten genes were analyzed in a repeat experiment with new rats using qRT-PCR. This confirmed the increased expression of four genes: early growth response 2 (Egr2), c-Fos, FosB, and regulation of G protein signaling 1 (Rgs1). The other genes were unaltered. We also analyzed the expression of early growth response 1 (Egr1), which is often co-regulated with c-Fos or Egr2, and found that this was also increased after loading. Egr1, Egr2, c-Fos, and FosB are transcription factors that can be triggered by numerous stimuli. However, Egr1 and Egr2 are necessary for normal tendon development, and can induce ectopic expression of tendon markers. The five regulated genes appear to constitute a general activation machinery. The further development of gene regulation might depend on the tissue context.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 42 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
France 1 2%
Unknown 41 98%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 12 29%
Student > Master 7 17%
Researcher 5 12%
Professor > Associate Professor 4 10%
Other 3 7%
Other 7 17%
Unknown 4 10%
Readers by discipline Count As %
Medicine and Dentistry 8 19%
Biochemistry, Genetics and Molecular Biology 7 17%
Engineering 6 14%
Agricultural and Biological Sciences 5 12%
Sports and Recreations 5 12%
Other 4 10%
Unknown 7 17%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 23 March 2013.
All research outputs
#14,599,900
of 25,373,627 outputs
Outputs from Journal of Applied Physiology
#6,664
of 9,077 outputs
Outputs of similar age
#112,708
of 210,395 outputs
Outputs of similar age from Journal of Applied Physiology
#48
of 80 outputs
Altmetric has tracked 25,373,627 research outputs across all sources so far. This one is in the 41st percentile – i.e., 41% of other outputs scored the same or lower than it.
So far Altmetric has tracked 9,077 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 13.7. This one is in the 25th percentile – i.e., 25% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 210,395 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 45th percentile – i.e., 45% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 80 others from the same source and published within six weeks on either side of this one. This one is in the 37th percentile – i.e., 37% of its contemporaries scored the same or lower than it.