↓ Skip to main content

Review: cornification, morphogenesis and evolution of feathers

Overview of attention for article published in Protoplasma, September 2016
Altmetric Badge

About this Attention Score

  • Good Attention Score compared to outputs of the same age and source (66th percentile)

Mentioned by

twitter
1 X user

Citations

dimensions_citation
42 Dimensions

Readers on

mendeley
49 Mendeley
Title
Review: cornification, morphogenesis and evolution of feathers
Published in
Protoplasma, September 2016
DOI 10.1007/s00709-016-1019-2
Pubmed ID
Authors

Lorenzo Alibardi

Abstract

Feathers are corneous microramifications of variable complexity derived from the morphogenesis of barb ridges. Histological and ultrastructural analyses on developing and regenerating feathers clarify the three-dimensional organization of cells in barb ridges. Feather cells derive from folds of the embryonic epithelium of feather germs from which barb/barbule cells and supportive cells organize in a branching structure. The following degeneration of supportive cells allows the separation of barbule cells which are made of corneous beta-proteins and of lower amounts of intermediate filament (IF)(alpha) keratins, histidine-rich proteins, and corneous proteins of the epidermal differentiation complex. The specific protein association gives rise to a corneous material with specific biomechanic properties in barbules, rami, rachis, or calamus. During the evolution of different feather types, a large expansion of the genome coding for corneous feather beta-proteins occurred and formed 3-4-nm-thick filaments through a different mechanism from that of 8-10 nm IF keratins. In the chick, over 130 genes mainly localized in chromosomes 27 and 25 encode feather corneous beta-proteins of 10-12 kDa containing 97-105 amino acids. About 35 genes localized in chromosome 25 code for scale proteins (14-16 kDa made of 122-146 amino acids), claws and beak proteins (14-17 kDa proteins of 134-164 amino acids). Feather morphogenesis is periodically re-activated to produce replacement feathers, and multiple feather types can result from the interactions of epidermal and dermal tissues. The review shows schematic models explaining the translation of the morphogenesis of barb ridges present in the follicle into the three-dimensional shape of the main types of branched or un-branched feathers such as plumulaceous, pennaceous, filoplumes, and bristles. The temporal pattern of formation of barb ridges in different feather types and the molecular control from the dermal papilla through signaling molecules are poorly known. The evolution and diversification of the process of morphogenesis of barb ridges and patterns of their formation within feathers follicle allowed the origin and diversification of numerous types of feathers, including the asymmetric planar feathers for flight.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 49 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 49 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 10 20%
Student > Bachelor 6 12%
Student > Master 5 10%
Student > Doctoral Student 4 8%
Student > Ph. D. Student 3 6%
Other 5 10%
Unknown 16 33%
Readers by discipline Count As %
Agricultural and Biological Sciences 12 24%
Biochemistry, Genetics and Molecular Biology 9 18%
Earth and Planetary Sciences 5 10%
Pharmacology, Toxicology and Pharmaceutical Science 2 4%
Materials Science 2 4%
Other 4 8%
Unknown 15 31%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 27 January 2019.
All research outputs
#15,392,529
of 22,899,952 outputs
Outputs from Protoplasma
#471
of 977 outputs
Outputs of similar age
#206,304
of 325,696 outputs
Outputs of similar age from Protoplasma
#5
of 24 outputs
Altmetric has tracked 22,899,952 research outputs across all sources so far. This one is in the 22nd percentile – i.e., 22% of other outputs scored the same or lower than it.
So far Altmetric has tracked 977 research outputs from this source. They receive a mean Attention Score of 2.4. This one is in the 43rd percentile – i.e., 43% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 325,696 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 28th percentile – i.e., 28% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 24 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 66% of its contemporaries.