↓ Skip to main content

The Gene Ontology Handbook

Overview of attention for book
Cover of 'The Gene Ontology Handbook'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 Primer on Ontologies
  3. Altmetric Badge
    Chapter 2 The Gene Ontology and the Meaning of Biological Function
  4. Altmetric Badge
    Chapter 3 Primer on the Gene Ontology
  5. Altmetric Badge
    Chapter 4 Best Practices in Manual Annotation with the Gene Ontology
  6. Altmetric Badge
    Chapter 5 Computational Methods for Annotation Transfers from Sequence
  7. Altmetric Badge
    Chapter 6 Text Mining to Support Gene Ontology Curation and Vice Versa
  8. Altmetric Badge
    Chapter 7 How Does the Scientific Community Contribute to Gene Ontology?
  9. Altmetric Badge
    Chapter 8 Evaluating Computational Gene Ontology Annotations
  10. Altmetric Badge
    Chapter 9 Evaluating Functional Annotations of Enzymes Using the Gene Ontology
  11. Altmetric Badge
    Chapter 10 Community-Wide Evaluation of Computational Function Prediction
  12. Altmetric Badge
    Chapter 11 Get GO! Retrieving GO Data Using AmiGO, QuickGO, API, Files, and Tools
  13. Altmetric Badge
    Chapter 12 Semantic Similarity in the Gene Ontology
  14. Altmetric Badge
    Chapter 13 Gene-Category Analysis
  15. Altmetric Badge
    Chapter 14 Gene Ontology: Pitfalls, Biases, and Remedies
  16. Altmetric Badge
    Chapter 15 Visualizing GO Annotations
  17. Altmetric Badge
    Chapter 16 A Gene Ontology Tutorial in Python
  18. Altmetric Badge
    Chapter 17 Annotation Extensions
  19. Altmetric Badge
    Chapter 18 The Evidence and Conclusion Ontology (ECO): Supporting GO Annotations
  20. Altmetric Badge
    Chapter 19 Complementary Sources of Protein Functional Information: The Far Side of GO
  21. Altmetric Badge
    Chapter 20 Integrating Bio-ontologies and Controlled Clinical Terminologies: From Base Pairs to Bedside Phenotypes
  22. Altmetric Badge
    Chapter 21 The Vision and Challenges of the Gene Ontology
Attention for Chapter 5: Computational Methods for Annotation Transfers from Sequence
Altmetric Badge

About this Attention Score

  • Above-average Attention Score compared to outputs of the same age (53rd percentile)
  • Good Attention Score compared to outputs of the same age and source (72nd percentile)

Mentioned by

wikipedia
2 Wikipedia pages

Citations

dimensions_citation
77 Dimensions

Readers on

mendeley
15 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Computational Methods for Annotation Transfers from Sequence
Chapter number 5
Book title
The Gene Ontology Handbook
Published in
Methods in molecular biology, January 2017
DOI 10.1007/978-1-4939-3743-1_5
Pubmed ID
Book ISBNs
978-1-4939-3741-7, 978-1-4939-3743-1
Authors

Domenico Cozzetto, David T. Jones, Cozzetto, Domenico, Jones, David T.

Editors

Christophe Dessimoz, Nives Škunca

Abstract

Surveys of public sequence resources show that experimentally supported functional information is still completely missing for a considerable fraction of known proteins and is clearly incomplete for an even larger portion. Bioinformatics methods have long made use of very diverse data sources alone or in combination to predict protein function, with the understanding that different data types help elucidate complementary biological roles. This chapter focuses on methods accepting amino acid sequences as input and producing GO term assignments directly as outputs; the relevant biological and computational concepts are presented along with the advantages and limitations of individual approaches.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 15 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Mexico 1 7%
Unknown 14 93%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 3 20%
Student > Ph. D. Student 3 20%
Librarian 2 13%
Other 1 7%
Student > Master 1 7%
Other 2 13%
Unknown 3 20%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 5 33%
Agricultural and Biological Sciences 3 20%
Pharmacology, Toxicology and Pharmaceutical Science 1 7%
Mathematics 1 7%
Computer Science 1 7%
Other 2 13%
Unknown 2 13%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 24 May 2019.
All research outputs
#7,491,592
of 22,899,952 outputs
Outputs from Methods in molecular biology
#2,329
of 13,134 outputs
Outputs of similar age
#141,106
of 420,444 outputs
Outputs of similar age from Methods in molecular biology
#246
of 1,074 outputs
Altmetric has tracked 22,899,952 research outputs across all sources so far. This one is in the 44th percentile – i.e., 44% of other outputs scored the same or lower than it.
So far Altmetric has tracked 13,134 research outputs from this source. They receive a mean Attention Score of 3.4. This one has done well, scoring higher than 76% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 420,444 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 53% of its contemporaries.
We're also able to compare this research output to 1,074 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 72% of its contemporaries.