↓ Skip to main content

The plasma membrane Ca2+ pump PMCA4b inhibits the migratory and metastatic activity of BRAF mutant melanoma cells

Overview of attention for article published in International Journal of Cancer, November 2016
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
30 Dimensions

Readers on

mendeley
30 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
The plasma membrane Ca2+ pump PMCA4b inhibits the migratory and metastatic activity of BRAF mutant melanoma cells
Published in
International Journal of Cancer, November 2016
DOI 10.1002/ijc.30503
Pubmed ID
Authors

Luca Hegedũs, Tamás Garay, Eszter Molnár, Karolina Varga, Ágnes Bilecz, Szilvia Török, Rita Padányi, Katalin Pászty, Matthias Wolf, Michael Grusch, Enikõ Kállay, Balázs Döme, Walter Berger, Balázs Hegedũs, Agnes Enyedi

Abstract

Oncogenic mutations of BRAF lead to constitutive ERK activity that supports melanoma cell growth and survival. While Ca(2+) signaling is a well-known regulator of tumor progression, the crosstalk between Ca(2+) signaling and the Ras-BRAF-MEK-ERK pathway is much less explored. Here we show that in BRAF mutant melanoma cells the abundance of the plasma membrane Ca(2+) ATPase isoform 4b (PMCA4b, ATP2B4) is low at baseline but markedly elevated by treatment with the mutant BRAF specific inhibitor vemurafenib. In line with these findings gene expression microarray data also shows decreased PMCA4b expression in cutaneous melanoma when compared to benign nevi. The MEK inhibitor selumetinib - similarly to that of the BRAF-specific inhibitor - also increases PMCA4b levels in both BRAF and NRAS mutant melanoma cells suggesting that the MAPK pathway is involved in the regulation of PMCA4b expression. The increased abundance of PMCA4b in the plasma membrane enhances [Ca(2+) ]i clearance from cells after Ca(2+) entry. Moreover we show that both vemurafenib treatment and PMCA4b overexpression induce marked inhibition of migration of BRAF mutant melanoma cells. Importantly, reduced migration of PMCA4b expressing BRAF mutant cells is associated with a marked decrease in their metastatic potential in vivo. Taken together, our data reveal an important crosstalk between Ca(2+) signaling and the MAPK pathway through the regulation of PMCA4b expression and suggest that PMCA4b is a previously unrecognized metastasis suppressor. This article is protected by copyright. All rights reserved.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 30 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 30 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 6 20%
Student > Ph. D. Student 4 13%
Student > Master 3 10%
Student > Doctoral Student 2 7%
Other 2 7%
Other 5 17%
Unknown 8 27%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 10 33%
Agricultural and Biological Sciences 4 13%
Immunology and Microbiology 2 7%
Pharmacology, Toxicology and Pharmaceutical Science 1 3%
Social Sciences 1 3%
Other 2 7%
Unknown 10 33%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 13 November 2016.
All research outputs
#18,482,034
of 22,901,818 outputs
Outputs from International Journal of Cancer
#10,408
of 11,736 outputs
Outputs of similar age
#303,960
of 417,509 outputs
Outputs of similar age from International Journal of Cancer
#55
of 73 outputs
Altmetric has tracked 22,901,818 research outputs across all sources so far. This one is in the 11th percentile – i.e., 11% of other outputs scored the same or lower than it.
So far Altmetric has tracked 11,736 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 8.4. This one is in the 5th percentile – i.e., 5% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 417,509 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 16th percentile – i.e., 16% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 73 others from the same source and published within six weeks on either side of this one. This one is in the 12th percentile – i.e., 12% of its contemporaries scored the same or lower than it.