↓ Skip to main content

The effect of five proteins on stem cells used for osteoblast differentiation and proliferation: a current review of the literature

Overview of attention for article published in Cellular and Molecular Life Sciences, April 2013
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
1 X user
facebook
1 Facebook page

Citations

dimensions_citation
86 Dimensions

Readers on

mendeley
146 Mendeley
Title
The effect of five proteins on stem cells used for osteoblast differentiation and proliferation: a current review of the literature
Published in
Cellular and Molecular Life Sciences, April 2013
DOI 10.1007/s00018-013-1326-0
Pubmed ID
Authors

P. Chatakun, R. Núñez-Toldrà, E. J. Díaz López, C. Gil-Recio, E. Martínez-Sarrà, F. Hernández-Alfaro, E. Ferrés-Padró, L. Giner-Tarrida, M. Atari

Abstract

Bone-tissue engineering is a therapeutic target in the field of dental implant and orthopedic surgery. It is therefore essential to find a microenvironment that enhances the growth and differentiation of osteoblasts both from mesenchymal stem cells (MSCs) and those derived from dental pulp. The aim of this review is to determine the relationship among the proteins fibronectin (FN), osteopontin (OPN), tenascin (TN), bone sialoprotein (BSP), and bone morphogenetic protein (BMP2) and their ability to coat different types of biomaterials and surfaces to enhance osteoblast differentiation. Pre-treatment of biomaterials with FN during the initial phase of osteogenic differentiation on all types of surfaces, including slotted titanium and polymers, provides an ideal microenvironment that enhances adhesion, morphology, and proliferation of pluripotent and multipotent cells. Likewise, in the second stage of differentiation, surface coating with BMP2 decreases the diameter and the pore size of the scaffold, causing better adhesion and reduced proliferation of BMP-MSCs. Coating oligomerization surfaces with OPN and BSP promotes cell adhesion, but it is clear that the polymeric coating material BSP alone is insufficient to induce priming of MSCs and functional osteoblastic differentiation in vivo. Finally, TN is involved in mineralization and can accelerate new bone formation in a multicellular environment but has no effect on the initial stage of osteogenesis.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 146 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United Kingdom 2 1%
Spain 1 <1%
Colombia 1 <1%
Ireland 1 <1%
Unknown 141 97%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 29 20%
Student > Master 29 20%
Student > Bachelor 16 11%
Researcher 13 9%
Student > Doctoral Student 8 5%
Other 18 12%
Unknown 33 23%
Readers by discipline Count As %
Medicine and Dentistry 36 25%
Agricultural and Biological Sciences 22 15%
Biochemistry, Genetics and Molecular Biology 20 14%
Engineering 13 9%
Materials Science 6 4%
Other 14 10%
Unknown 35 24%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 10 April 2013.
All research outputs
#18,530,416
of 23,794,258 outputs
Outputs from Cellular and Molecular Life Sciences
#3,334
of 4,151 outputs
Outputs of similar age
#146,971
of 201,215 outputs
Outputs of similar age from Cellular and Molecular Life Sciences
#26
of 48 outputs
Altmetric has tracked 23,794,258 research outputs across all sources so far. This one is in the 19th percentile – i.e., 19% of other outputs scored the same or lower than it.
So far Altmetric has tracked 4,151 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.0. This one is in the 16th percentile – i.e., 16% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 201,215 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 23rd percentile – i.e., 23% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 48 others from the same source and published within six weeks on either side of this one. This one is in the 43rd percentile – i.e., 43% of its contemporaries scored the same or lower than it.