↓ Skip to main content

Spinning around in Transition-Metal Chemistry

Overview of attention for article published in Accounts of Chemical Research, November 2016
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (92nd percentile)
  • High Attention Score compared to outputs of the same age and source (97th percentile)

Mentioned by

blogs
1 blog
twitter
38 X users

Citations

dimensions_citation
119 Dimensions

Readers on

mendeley
118 Mendeley
citeulike
1 CiteULike
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Spinning around in Transition-Metal Chemistry
Published in
Accounts of Chemical Research, November 2016
DOI 10.1021/acs.accounts.6b00271
Pubmed ID
Authors

Marcel Swart, Maja Gruden

Abstract

The great diversity and richness of transition metal chemistry, such as the features of an open d-shell, opened a way to numerous areas of scientific research and technological applications. Depending on the nature of the metal and its environment, there are often several energetically accessible spin states, and the progress in accurate theoretical treatment of this complicated phenomenon is presented in this Account. The spin state energetics of a transition metal complex can be predicted theoretically on the basis of density functional theory (DFT) or wave function based methodology, where DFT has advantages since it can be applied routinely to medium-to-large-sized molecules and spin-state consistent density functionals are now available. Additional factors such as the effect of the basis set, thermochemical contributions, solvation, relativity, and dispersion, have been investigated by many researchers, but challenges in unambiguous assignment of spin states still remain. The first DFT studies showed intrinsic spin-state preferences of hybrid functionals for high spin and early generalized gradient approximation functionals for low spin. Progress in the development of density functional approximations (DFAs) then led to a class of specially designed DFAs, such as OPBE, SSB-D, and S12g, and brought a very intriguing and fascinating observation that the spin states of transition metals and the SN2 barriers of organic molecules are somehow intimately linked. Among the many noteworthy results that emerged from the search for the appropriate description of the complicated spin state preferences in transition metals, we mainly focused on the examination of the connection between the spin state and the structures or coordination modes of the transition metal complexes. Changes in spin states normally lead only to changes in the metal-ligand bond lengths, but to the best of our knowledge, the dapsox ligand showed the first example of a transition-metal complex where a change in spin state leads also to changes in the coordination, switching between pentagonal-bipyramidal and capped-octahedron. Moreover, we have summarized the results of the thorough study that corrected the experimental assignment of the nature of the recently synthesized Sc(3+) adduct of [Fe(IV)(O)(TMC)](2+) (TMC = 1,4,8,11-tetramethylcyclam) and firmly established that the Sc(3+)-capped iron-oxygen complex corresponds to high-spin Fe(III). Last, but not least, we have provided deeper insight and rationalization of the observation that unlike in metalloenzymes, where the Fe(IV)-oxo is usually observed with high spin, biomimetic Fe(IV)-oxo complexes typically have a intermediate spin state. Energy decomposition analyses on the trigonal-bypiramidal (TBP) and octahedral model systems with ammonia ligands have revealed that the interaction energy of the prepared metal ion in the intermediate spin state is much smaller for the TBP structure. This sheds light on the origin of the intermediate spin state of the biomimetic TBP Fe(IV)-oxo complexes.

X Demographics

X Demographics

The data shown below were collected from the profiles of 38 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 118 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United Kingdom 1 <1%
United States 1 <1%
Netherlands 1 <1%
Unknown 115 97%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 33 28%
Researcher 14 12%
Student > Bachelor 11 9%
Student > Master 7 6%
Professor 6 5%
Other 20 17%
Unknown 27 23%
Readers by discipline Count As %
Chemistry 64 54%
Physics and Astronomy 8 7%
Chemical Engineering 4 3%
Agricultural and Biological Sciences 2 2%
Biochemistry, Genetics and Molecular Biology 2 2%
Other 7 6%
Unknown 31 26%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 30. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 06 May 2022.
All research outputs
#1,312,656
of 25,505,015 outputs
Outputs from Accounts of Chemical Research
#70
of 4,060 outputs
Outputs of similar age
#23,178
of 313,561 outputs
Outputs of similar age from Accounts of Chemical Research
#2
of 36 outputs
Altmetric has tracked 25,505,015 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 94th percentile: it's in the top 10% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 4,060 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.2. This one has done particularly well, scoring higher than 98% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 313,561 tracked outputs that were published within six weeks on either side of this one in any source. This one has done particularly well, scoring higher than 92% of its contemporaries.
We're also able to compare this research output to 36 others from the same source and published within six weeks on either side of this one. This one has done particularly well, scoring higher than 97% of its contemporaries.