↓ Skip to main content

Colour vision and response bias in a coral reef fish

Overview of attention for article published in Journal of Experimental Biology, January 2013
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
4 X users

Citations

dimensions_citation
51 Dimensions

Readers on

mendeley
130 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Colour vision and response bias in a coral reef fish
Published in
Journal of Experimental Biology, January 2013
DOI 10.1242/jeb.087932
Pubmed ID
Authors

Karen L. Cheney, Cait Newport, Eva C. McClure, N. Justin Marshall

Abstract

Animals use coloured signals for a variety of communication purposes, including to attract potential mates, recognize individuals, defend territories and warn predators of secondary defences (aposematism). To understand the mechanisms that drive the evolution and design of such visual signals, it is important to understand the visual systems and potential response biases of signal receivers. Here, we provide raw data on the spectral capabilities of a coral reef fish, the Picasso triggerfish Rhinecanthus aculeatus, which is potentially trichromatic with three cone sensitivities of 413 nm (single cone), 480 nm (double cone, medium sensitivity) and 528 nm (double cone, long sensitivity), and a rod sensitivity of 498 nm. The ocular media have a 50% transmission cut off at 405 nm. Behavioural experiments confirmed colour vision over their spectral range; triggerfish were significantly more likely to choose coloured stimuli over grey distractors, irrespective of luminance. We then examined whether response biases existed towards coloured and patterned stimuli to provide insight into how visual signals - in particular, aposematic colouration - may evolve. Triggerfish showed a preferential foraging response bias to red and green stimuli, in contrast to blue and yellow, irrespective of pattern. There was no response bias to patterned over monochromatic non-patterned stimuli. A foraging response bias towards red in fish differs from that of avian predators, who often avoid red food items. Red is frequently associated with warning colouration in terrestrial environments (ladybirds, snakes, frogs), whilst blue is used in aquatic environments (blue-ringed octopus, nudibranchs); whether the design of warning (aposematic) displays is a cause or consequence of response biases is unclear.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 130 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Australia 2 2%
United States 1 <1%
Unknown 127 98%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 30 23%
Student > Bachelor 23 18%
Researcher 19 15%
Student > Master 17 13%
Student > Doctoral Student 6 5%
Other 12 9%
Unknown 23 18%
Readers by discipline Count As %
Agricultural and Biological Sciences 73 56%
Environmental Science 15 12%
Social Sciences 4 3%
Biochemistry, Genetics and Molecular Biology 3 2%
Nursing and Health Professions 1 <1%
Other 8 6%
Unknown 26 20%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 11 July 2013.
All research outputs
#14,783,688
of 25,373,627 outputs
Outputs from Journal of Experimental Biology
#6,008
of 9,330 outputs
Outputs of similar age
#168,153
of 288,991 outputs
Outputs of similar age from Journal of Experimental Biology
#160
of 294 outputs
Altmetric has tracked 25,373,627 research outputs across all sources so far. This one is in the 41st percentile – i.e., 41% of other outputs scored the same or lower than it.
So far Altmetric has tracked 9,330 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 14.9. This one is in the 35th percentile – i.e., 35% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 288,991 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 41st percentile – i.e., 41% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 294 others from the same source and published within six weeks on either side of this one. This one is in the 45th percentile – i.e., 45% of its contemporaries scored the same or lower than it.