↓ Skip to main content

Three Patterns of Acetabular Deficiency Are Common in Young Adult Patients With Acetabular Dysplasia

Overview of attention for article published in Clinical Orthopaedics & Related Research, November 2016
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (86th percentile)
  • High Attention Score compared to outputs of the same age and source (86th percentile)

Mentioned by

twitter
18 X users
facebook
1 Facebook page

Citations

dimensions_citation
103 Dimensions

Readers on

mendeley
117 Mendeley
Title
Three Patterns of Acetabular Deficiency Are Common in Young Adult Patients With Acetabular Dysplasia
Published in
Clinical Orthopaedics & Related Research, November 2016
DOI 10.1007/s11999-016-5150-3
Pubmed ID
Authors

Jeffrey J. Nepple, Joel Wells, James R. Ross, Asheesh Bedi, Perry L. Schoenecker, John C. Clohisy

Abstract

Detailed recognition of the three-dimensional (3-D) deformity in acetabular dysplasia is important to help guide correction at the time of reorientation during periacetabular osteotomy (PAO). Common plain radiographic parameters of acetabular dysplasia are limited in their ability to characterize acetabular deficiency precisely. The 3-D characterization of such deficiencies with low-dose CT may allow for more precise characterization. The purposes of this study were (1) to determine the variability in 3-D acetabular deficiency in acetabular dysplasia; (2) to define subtypes of acetabular dysplasia based on 3-D morphology; (3) to determine the correlation of plain radiographic parameters with 3-D morphology; and (4) to determine the association of acetabular dysplasia subtype with patient clinical characteristics including sex, range of motion, and femoral version. Using our hip preservation database, we identified 153 hips (148 patients) that underwent PAO from October 2013 to July 2015. Among those, we noted 103 hips in 100 patients with acetabular dysplasia (lateral center-edge angle < 20°) and who had a Tönnis grade of 0 or 1. Eighty-six patients (86%) underwent preoperative low-dose pelvic CT scans at our institution as part of the preoperative planning for PAO. It is currently our standard to obtain preoperative low-dose pelvic CT scans (0.75-1.25 mSv, equivalent to three to five AP pelvis radiographs) on all patients before undergoing PAO unless a prior CT scan was performed at an outside institution. Hips with a history of a neuromuscular disorder, prior trauma, prior surgery, radiographic evidence of joint degeneration, ischemic necrosis, or Perthes-like deformities were excluded. Fifty hips in 50 patients met inclusion criteria and had CT scans available for review. These low-dose CT scans of 50 patients with symptomatic acetabular dysplasia undergoing evaluation for surgical planning of PAO were then retrospectively studied. CT scans were analyzed quantitatively for acetabular coverage, relative to established normative data for acetabular coverage, as well as measurement of femoral version. The cohort included 45 females and five males with a mean age of 26 years (range, 13-49 years). Lateral acetabular deficiency was present in all patients, whereas anterior deficiency and posterior deficiency were variable. Three patterns of acetabular deficiency were common: anterosuperior deficiency (15 of 50 [30%]), global deficiency (18 of 50 [36%]), and posterosuperior deficiency (17 of 50 [34%]). The presence of a crossover sign or posterior wall sign was poorly predictive of the dysplasia subtype. With the numbers available, males appeared more likely to have a posterosuperior deficiency pattern (four of five [80%]) compared with females (13 of 45 [29%], p = 0.040). Hip internal rotation in flexion was significantly greater in anterosuperior deficiency (23° versus 18°, p = 0.05), whereas external rotation in flexion was significantly greater in posterosuperior deficiency (43° versus 34°, p = 0.018). Acetabular deficiency pattern did not correlate with femoral version, which was variable across all subtypes. Three patterns of acetabular deficiency commonly occur among young adult patients with mild, moderate, and severe acetabular dysplasia. These patterns include anterosuperior, global, and posterosuperior deficiency and are variably observed independent of femoral version. Recognition of these distinct morphologic subtypes is important for diagnostic and surgical treatment considerations in patients with acetabular dysplasia to optimize acetabular correction and avoid femoroacetabular impingement.

X Demographics

X Demographics

The data shown below were collected from the profiles of 18 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 117 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 117 100%

Demographic breakdown

Readers by professional status Count As %
Other 17 15%
Researcher 15 13%
Student > Master 14 12%
Student > Doctoral Student 10 9%
Student > Bachelor 6 5%
Other 21 18%
Unknown 34 29%
Readers by discipline Count As %
Medicine and Dentistry 58 50%
Biochemistry, Genetics and Molecular Biology 4 3%
Nursing and Health Professions 4 3%
Veterinary Science and Veterinary Medicine 2 2%
Engineering 2 2%
Other 5 4%
Unknown 42 36%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 15. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 04 July 2021.
All research outputs
#2,481,064
of 25,374,647 outputs
Outputs from Clinical Orthopaedics & Related Research
#377
of 7,298 outputs
Outputs of similar age
#41,630
of 319,129 outputs
Outputs of similar age from Clinical Orthopaedics & Related Research
#12
of 91 outputs
Altmetric has tracked 25,374,647 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 90th percentile: it's in the top 10% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 7,298 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.8. This one has done particularly well, scoring higher than 94% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 319,129 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 86% of its contemporaries.
We're also able to compare this research output to 91 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 86% of its contemporaries.