↓ Skip to main content

Production of LPS-induced inflammatory mediators in murine peritoneal macrophages: neocuproine as a broad inhibitor and ATP7A as a selective regulator

Overview of attention for article published in BioMetals, April 2013
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
9 Dimensions

Readers on

mendeley
13 Mendeley
Title
Production of LPS-induced inflammatory mediators in murine peritoneal macrophages: neocuproine as a broad inhibitor and ATP7A as a selective regulator
Published in
BioMetals, April 2013
DOI 10.1007/s10534-013-9624-4
Pubmed ID
Authors

Om V. Patel, William B. Wilson, Zhenyu Qin

Abstract

Copper chelation regulates the production of inflammatory mediators in vivo during vascular inflammation and atherogenesis. Little is known about how the copper egress pump ATP7A regulates the production of these mediators. In this study, we isolated ATP7A deficient macrophages (MΦ) from the peritoneal cavity of blotchy mice and identified the lipopolysaccharide (LPS)-induced inflammatory mediators that were altered by ATP7A deficiency. These results were compared with the effect of neocuproine (a copper chelator) treatment on both ATP7A deficient and control MΦ. Seven of the 24 inflammatory mediators examined in this study had significant changes in expression in the ATP7A deficient MΦ compared to controls; 16 of these mediators were significantly reduced in MΦ treated with neocuproine compared to controls. Both neocuproine treatment and ATP7A deficiency reduced IFN-γ, MCP-1, MCP-3, and VEGF-A levels. Interestingly, the production of KC/GRO was upregulated by ATP7A deficiency but downregulated by neocuproine treatment. Neocuproine, but not ATP7A deficiency, reduced the production of FGF-9, IL-1α, IL-12p70, IL-2, IL-3, IL-4, IL-6, MIP-1β, MIP-2, RANTES, and TNFα. ATP7A deficiency but not neocuproine treatment reduced IP-10 and MCP-5 levels. In addition, both ATP7A deficiency and neocuproine treatment had no effect on GM-CSF, IL-10, IL-11, IL-7, OSM, and SCF. Together, these findings provide evidence that MΦ ATP7A selectively regulates LPS-induced inflammatory mediators, in part, via modulation of cellular copper availability, whereas neocuproine generally inhibits the production of inflammatory mediators. These results also imply that although copper chelation and ATP7A downregulation may result in different copper concentrations, gradients, and/or distribution in the cells, they may not lead to opposite biological effects on inflammatory mediator production.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 13 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United Kingdom 1 8%
Unknown 12 92%

Demographic breakdown

Readers by professional status Count As %
Other 3 23%
Student > Doctoral Student 3 23%
Student > Ph. D. Student 2 15%
Student > Master 1 8%
Researcher 1 8%
Other 1 8%
Unknown 2 15%
Readers by discipline Count As %
Medicine and Dentistry 3 23%
Biochemistry, Genetics and Molecular Biology 2 15%
Agricultural and Biological Sciences 2 15%
Energy 1 8%
Psychology 1 8%
Other 2 15%
Unknown 2 15%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 23 April 2013.
All research outputs
#20,191,579
of 22,708,120 outputs
Outputs from BioMetals
#522
of 641 outputs
Outputs of similar age
#172,288
of 197,527 outputs
Outputs of similar age from BioMetals
#3
of 6 outputs
Altmetric has tracked 22,708,120 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 641 research outputs from this source. They receive a mean Attention Score of 4.2. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 197,527 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 6 others from the same source and published within six weeks on either side of this one. This one has scored higher than 3 of them.