↓ Skip to main content

The Tissue-Specific RNA Binding Protein T-STAR Controls Regional Splicing Patterns of Neurexin Pre-mRNAs in the Brain

Overview of attention for article published in PLoS Genetics, April 2013
Altmetric Badge

Mentioned by

twitter
2 X users

Citations

dimensions_citation
72 Dimensions

Readers on

mendeley
77 Mendeley
citeulike
1 CiteULike
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
The Tissue-Specific RNA Binding Protein T-STAR Controls Regional Splicing Patterns of Neurexin Pre-mRNAs in the Brain
Published in
PLoS Genetics, April 2013
DOI 10.1371/journal.pgen.1003474
Pubmed ID
Authors

Ingrid Ehrmann, Caroline Dalgliesh, Yilei Liu, Marina Danilenko, Moira Crosier, Lynn Overman, Helen M. Arthur, Susan Lindsay, Gavin J. Clowry, Julian P. Venables, Philippe Fort, David J. Elliott

Abstract

The RNA binding protein T-STAR was created following a gene triplication 520-610 million years ago, which also produced its two parologs Sam68 and SLM-1. Here we have created a T-STAR null mouse to identify the endogenous functions of this RNA binding protein. Mice null for T-STAR developed normally and were fertile, surprisingly, given the high expression of T-STAR in the testis and the brain, and the known infertility and pleiotropic defects of Sam68 null mice. Using a transcriptome-wide search for splicing targets in the adult brain, we identified T-STAR protein as a potent splicing repressor of the alternatively spliced segment 4 (AS4) exons from each of the Neurexin1-3 genes, and exon 23 of the Stxbp5l gene. T-STAR protein was most highly concentrated in forebrain-derived structures like the hippocampus, which also showed maximal Neurexin1-3 AS4 splicing repression. In the absence of endogenous T-STAR protein, Nrxn1-3 AS4 splicing repression dramatically decreased, despite physiological co-expression of Sam68. In transfected cells Neurexin3 AS4 alternative splicing was regulated by either T-STAR or Sam68 proteins. In contrast, Neurexin2 AS4 splicing was only regulated by T-STAR, through a UWAA-rich response element immediately downstream of the regulated exon conserved since the radiation of bony vertebrates. The AS4 exons in the Nrxn1 and Nrxn3 genes were also associated with distinct patterns of conserved UWAA repeats. Consistent with an ancient mechanism of splicing control, human T-STAR protein was able to repress splicing inclusion of the zebrafish Nrxn3 AS4 exon. Although Neurexin1-3 and Stxbp5l encode critical synaptic proteins, T-STAR null mice had no detectable spatial memory deficits, despite an almost complete absence of AS4 splicing repression in the hippocampus. Our work identifies T-STAR as an ancient and potent tissue-specific splicing regulator that uses a concentration-dependent mechanism to co-ordinately regulate regional splicing patterns of the Neurexin1-3 AS4 exons in the mouse brain.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 77 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 77 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 22 29%
Researcher 15 19%
Student > Bachelor 8 10%
Student > Postgraduate 5 6%
Student > Master 5 6%
Other 10 13%
Unknown 12 16%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 25 32%
Agricultural and Biological Sciences 21 27%
Medicine and Dentistry 6 8%
Neuroscience 4 5%
Computer Science 2 3%
Other 2 3%
Unknown 17 22%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 11 July 2013.
All research outputs
#19,975,266
of 25,411,814 outputs
Outputs from PLoS Genetics
#7,807
of 8,964 outputs
Outputs of similar age
#150,551
of 205,986 outputs
Outputs of similar age from PLoS Genetics
#148
of 186 outputs
Altmetric has tracked 25,411,814 research outputs across all sources so far. This one is in the 18th percentile – i.e., 18% of other outputs scored the same or lower than it.
So far Altmetric has tracked 8,964 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 17.8. This one is in the 9th percentile – i.e., 9% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 205,986 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 23rd percentile – i.e., 23% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 186 others from the same source and published within six weeks on either side of this one. This one is in the 13th percentile – i.e., 13% of its contemporaries scored the same or lower than it.