↓ Skip to main content

Cell-type-specific expression of NFIX in the developing and adult cerebellum

Overview of attention for article published in Brain Structure and Function, November 2016
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Above-average Attention Score compared to outputs of the same age and source (56th percentile)

Mentioned by

twitter
3 X users

Citations

dimensions_citation
14 Dimensions

Readers on

mendeley
25 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Cell-type-specific expression of NFIX in the developing and adult cerebellum
Published in
Brain Structure and Function, November 2016
DOI 10.1007/s00429-016-1340-8
Pubmed ID
Authors

James Fraser, Alexandra Essebier, Richard M. Gronostajski, Mikael Boden, Brandon J. Wainwright, Tracey J. Harvey, Michael Piper

Abstract

Transcription factors from the nuclear factor one (NFI) family have been shown to play a central role in regulating neural progenitor cell differentiation within the embryonic and post-natal brain. NFIA and NFIB, for instance, promote the differentiation and functional maturation of granule neurons within the cerebellum. Mice lacking Nfix exhibit delays in the development of neuronal and glial lineages within the cerebellum, but the cell-type-specific expression of this transcription factor remains undefined. Here, we examined the expression of NFIX, together with various cell-type-specific markers, within the developing and adult cerebellum using both chromogenic immunohistochemistry and co-immunofluorescence labelling and confocal microscopy. In embryos, NFIX was expressed by progenitor cells within the rhombic lip and ventricular zone. After birth, progenitor cells within the external granule layer, as well as migrating and mature granule neurons, expressed NFIX. Within the adult cerebellum, NFIX displayed a broad expression profile, and was evident within granule cells, Bergmann glia, and interneurons, but not within Purkinje neurons. Furthermore, transcriptomic profiling of cerebellar granule neuron progenitor cells showed that multiple splice variants of Nfix are expressed within this germinal zone of the post-natal brain. Collectively, these data suggest that NFIX plays a role in regulating progenitor cell biology within the embryonic and post-natal cerebellum, as well as an ongoing role within multiple neuronal and glial populations within the adult cerebellum.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 25 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 25 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 6 24%
Student > Ph. D. Student 5 20%
Student > Master 4 16%
Researcher 2 8%
Student > Doctoral Student 1 4%
Other 1 4%
Unknown 6 24%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 10 40%
Neuroscience 6 24%
Agricultural and Biological Sciences 2 8%
Immunology and Microbiology 1 4%
Unknown 6 24%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 05 December 2018.
All research outputs
#15,897,690
of 25,158,951 outputs
Outputs from Brain Structure and Function
#881
of 1,751 outputs
Outputs of similar age
#238,223
of 427,073 outputs
Outputs of similar age from Brain Structure and Function
#11
of 23 outputs
Altmetric has tracked 25,158,951 research outputs across all sources so far. This one is in the 34th percentile – i.e., 34% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,751 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 7.2. This one is in the 44th percentile – i.e., 44% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 427,073 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 41st percentile – i.e., 41% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 23 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 56% of its contemporaries.