↓ Skip to main content

Growth cone dynamics in the zebrafish embryonic forebrain are regulated by Brother of Cdo

Overview of attention for article published in Neuroscience Letters, April 2013
Altmetric Badge

Mentioned by

twitter
2 X users

Citations

dimensions_citation
6 Dimensions

Readers on

mendeley
7 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Growth cone dynamics in the zebrafish embryonic forebrain are regulated by Brother of Cdo
Published in
Neuroscience Letters, April 2013
DOI 10.1016/j.neulet.2013.04.009
Pubmed ID
Authors

James A. St John, Susan Scott, Kah Yau Chua, Christina Claxton, Brian Key

Abstract

During development of the embryonic zebrafish brain, the differential expression of axon guidance molecules directs the growth of axons along defined neuronal tracts. Neurons within the dorsorostral cluster of the presumptive telencephalon project axons ventrally along the supraoptic tract. Brother of Cdo (Boc) is a known axon guidance molecule that is expressed in a broad band lying ventral to the dorsorostral cluster of neurons. Loss of Boc function has previously been shown to perturb the development of the supraoptic tract. We have used live cell imaging of individual growth cones within the living zebrafish embryo to determine how Boc regulates the growth cone dynamics and axon guidance within the supraoptic tract. A plasmid construct encoding elavl3-eGFP was injected into early embryos to selectively label a small number of neurons while the expression of Boc was knocked down by injection of antisense morpholino oligonucleotides. Time-lapse imaging of growth cones within the living embryos revealed that loss of Boc significantly affected the morphology of growth cones in comparison to axons within control embryos. Growth cones navigating along the supraoptic tract in the absence of Boc extended significantly longer filopodia in the rostrocaudal direction. These results indicate that Boc acts to restrict axons and their filopodia within the narrow pathway of the supraoptic tract. The highly selective nature of these pathfinding defects reveal that Boc is likely to be one of many molecules that coordinate the trajectory of axons within the supraoptic tract.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 7 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 7 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 2 29%
Student > Postgraduate 2 29%
Student > Ph. D. Student 1 14%
Researcher 1 14%
Lecturer 1 14%
Other 0 0%
Readers by discipline Count As %
Neuroscience 3 43%
Agricultural and Biological Sciences 2 29%
Medicine and Dentistry 2 29%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 31 May 2013.
All research outputs
#19,944,994
of 25,374,647 outputs
Outputs from Neuroscience Letters
#5,919
of 7,756 outputs
Outputs of similar age
#154,422
of 210,035 outputs
Outputs of similar age from Neuroscience Letters
#42
of 56 outputs
Altmetric has tracked 25,374,647 research outputs across all sources so far. This one is in the 18th percentile – i.e., 18% of other outputs scored the same or lower than it.
So far Altmetric has tracked 7,756 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.1. This one is in the 21st percentile – i.e., 21% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 210,035 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 23rd percentile – i.e., 23% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 56 others from the same source and published within six weeks on either side of this one. This one is in the 23rd percentile – i.e., 23% of its contemporaries scored the same or lower than it.