↓ Skip to main content

Attempting to Compensate for Reduced Neuronal Nitric Oxide Synthase Protein with Nitrate Supplementation Cannot Overcome Metabolic Dysfunction but Rather Has Detrimental Effects in Dystrophin-Deficient…

Overview of attention for article published in Neurotherapeutics, December 2016
Altmetric Badge

Mentioned by

twitter
2 X users

Citations

dimensions_citation
28 Dimensions

Readers on

mendeley
59 Mendeley
Title
Attempting to Compensate for Reduced Neuronal Nitric Oxide Synthase Protein with Nitrate Supplementation Cannot Overcome Metabolic Dysfunction but Rather Has Detrimental Effects in Dystrophin-Deficient mdx Muscle
Published in
Neurotherapeutics, December 2016
DOI 10.1007/s13311-016-0494-7
Pubmed ID
Authors

Cara A. Timpani, Adam J. Trewin, Vanesa Stojanovska, Ainsley Robinson, Craig A. Goodman, Kulmira Nurgali, Andrew C. Betik, Nigel Stepto, Alan Hayes, Glenn K. McConell, Emma Rybalka

Abstract

Duchenne muscular dystrophy arises from the loss of dystrophin and is characterized by calcium dysregulation, muscular atrophy, and metabolic dysfunction. The secondary reduction of neuronal nitric oxide synthase (nNOS) from the sarcolemma reduces NO production and bioavailability. As NO modulates glucose uptake, metabolism, and mitochondrial bioenergetics, we investigated whether an 8-week nitrate supplementation regimen could overcome metabolic dysfunction in the mdx mouse. Dystrophin-positive control (C57BL/10) and dystrophin-deficient mdx mice were supplemented with sodium nitrate (85 mg/l) in drinking water. Following the supplementation period, extensor digitorum longus and soleus were excised and radioactive glucose uptake was measured at rest (basal) and during contraction. Gastrocnemius was excised and mitochondrial respiration was measured using the Oroboros Oxygraph. Tibialis anterior was analyzed immunohistochemically for the presence of dystrophin, nNOS, nitrotyrosine, IgG and CD45+ cells, and histologically to assess areas of damage and regeneration. Glucose uptake in the basal and contracting states was normal in unsupplemented mdx muscles but was reduced following nitrate supplementation in mdx muscles only. The mitochondrial utilization of substrates was also impaired in mdx gastrocnemius during phosphorylating and maximal uncoupled respiration, and nitrate could not improve respiration in mdx muscle. Although nitrate supplementation reduced mitochondrial hydrogen peroxide emission, it induced mitochondrial uncoupling in red gastrocnemius, increased muscle fiber peroxynitrite (nitrotyrosine), and promoted skeletal muscle damage. Our novel data suggest that despite lower nNOS protein expression and likely lower NO production in mdx muscle, enhancing NO production with nitrate supplementation in these mice has detrimental effects on skeletal muscle. This may have important relevance for those with DMD.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 59 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 1 2%
Unknown 58 98%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 12 20%
Student > Ph. D. Student 10 17%
Student > Master 7 12%
Researcher 4 7%
Student > Doctoral Student 3 5%
Other 9 15%
Unknown 14 24%
Readers by discipline Count As %
Medicine and Dentistry 11 19%
Biochemistry, Genetics and Molecular Biology 10 17%
Sports and Recreations 6 10%
Nursing and Health Professions 5 8%
Agricultural and Biological Sciences 5 8%
Other 5 8%
Unknown 17 29%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 08 December 2016.
All research outputs
#19,944,994
of 25,374,647 outputs
Outputs from Neurotherapeutics
#1,128
of 1,307 outputs
Outputs of similar age
#298,265
of 416,423 outputs
Outputs of similar age from Neurotherapeutics
#18
of 21 outputs
Altmetric has tracked 25,374,647 research outputs across all sources so far. This one is in the 18th percentile – i.e., 18% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,307 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 18.2. This one is in the 10th percentile – i.e., 10% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 416,423 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 24th percentile – i.e., 24% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 21 others from the same source and published within six weeks on either side of this one. This one is in the 9th percentile – i.e., 9% of its contemporaries scored the same or lower than it.