↓ Skip to main content

Nutrient enrichment effects on mycorrhizal fungi in an Andean tropical montane Forest

Overview of attention for article published in Mycorrhiza, December 2016
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
3 X users

Citations

dimensions_citation
16 Dimensions

Readers on

mendeley
55 Mendeley
Title
Nutrient enrichment effects on mycorrhizal fungi in an Andean tropical montane Forest
Published in
Mycorrhiza, December 2016
DOI 10.1007/s00572-016-0749-5
Pubmed ID
Authors

Camille S. Delavaux, Tessa Camenzind, Jürgen Homeier, Rosa Jiménez-Paz, Mark Ashton, Simon A. Queenborough

Abstract

Nitrogen (N) and phosphorus (P) deposition are increasing worldwide largely due to increased fertilizer use and fossil fuel combustion. Most work with N and P deposition in natural ecosystems has focused on temperate, highly industrialized, regions. Tropical regions are becoming more developed, releasing large amounts of these nutrients into the atmosphere. Nutrient enrichment in nutrient-poor systems such as tropical montane forest can represent a relatively large shift in nutrient availability, especially for sensitive microorganisms such as arbuscular mycorrhizal fungi (AMF). These symbiotic fungi are particularly critical, given their key role in ecosystem processes affecting plant community structure and function.To better understand the consequences of nutrient deposition in plant communities, a long-term nutrient addition experiment was set up in a tropical montane forest in the Andes of southern Ecuador. In this study, we investigated the impacts of 7 years of elevated N and P on AMF root colonization potential (AMF-RCP) through a greenhouse bait plant method in which we quantified root colonization. We also examined the relationship between AMF-RCP and rarefied tree diversity.After 7 years of nutrient addition, AMF-RCP was negatively correlated with soil P, positively correlated with soil N, and positively correlated with rarefied tree diversity. Our results show that AMF in this tropical montane forest are directly affected by soil N and P concentrations, but may also be indirectly impacted by shifts in rarefied tree diversity. Our research also highlights the need to fully understand the benefits and drawbacks of using different sampling methods (e.g., AMF-RCP versus direct root sampling) to robustly examine AMF-plant interactions in the future.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 55 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 55 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 15 27%
Student > Ph. D. Student 7 13%
Student > Master 5 9%
Student > Doctoral Student 4 7%
Student > Bachelor 4 7%
Other 7 13%
Unknown 13 24%
Readers by discipline Count As %
Agricultural and Biological Sciences 21 38%
Environmental Science 9 16%
Biochemistry, Genetics and Molecular Biology 3 5%
Earth and Planetary Sciences 2 4%
Medicine and Dentistry 1 2%
Other 1 2%
Unknown 18 33%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 11 January 2018.
All research outputs
#14,003,907
of 22,908,162 outputs
Outputs from Mycorrhiza
#328
of 651 outputs
Outputs of similar age
#221,106
of 419,595 outputs
Outputs of similar age from Mycorrhiza
#10
of 18 outputs
Altmetric has tracked 22,908,162 research outputs across all sources so far. This one is in the 37th percentile – i.e., 37% of other outputs scored the same or lower than it.
So far Altmetric has tracked 651 research outputs from this source. They receive a mean Attention Score of 3.4. This one is in the 47th percentile – i.e., 47% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 419,595 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 46th percentile – i.e., 46% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 18 others from the same source and published within six weeks on either side of this one. This one is in the 44th percentile – i.e., 44% of its contemporaries scored the same or lower than it.