↓ Skip to main content

A methylcellulose and collagen based temperature responsive hydrogel promotes encapsulated stem cell viability and proliferation in vitro

Overview of attention for article published in Drug Delivery and Translational Research, December 2016
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (80th percentile)

Mentioned by

twitter
10 X users
facebook
2 Facebook pages

Citations

dimensions_citation
27 Dimensions

Readers on

mendeley
59 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
A methylcellulose and collagen based temperature responsive hydrogel promotes encapsulated stem cell viability and proliferation in vitro
Published in
Drug Delivery and Translational Research, December 2016
DOI 10.1007/s13346-016-0347-2
Pubmed ID
Authors

Christina Payne, Eimear B. Dolan, Janice O’Sullivan, Sally-Ann Cryan, Helena M. Kelly

Abstract

With the number of stem cell-based therapies emerging on the increase, the need for novel and efficient delivery technologies to enable therapies to remain in damaged tissue and exert their therapeutic benefit for extended periods, has become a key requirement for their translation. Hydrogels, and in particular, thermoresponsive hydrogels, have the potential to act as such delivery systems. Thermoresponsive hydrogels, which are polymer solutions that transform into a gel upon a temperature increase, have a number of applications in the biomedical field due to their tendency to maintain a liquid state at room temperature, thereby enabling minimally invasive administration and a subsequent ability to form a robust gel upon heating to physiological temperature. However, various hurdles must be overcome to increase the clinical translation of hydrogels as a stem cell delivery system, with barriers including their low tensile strength and their inadequate support of cell viability and attachment. In order to address these issues, a methylcellulose based hydrogel was formulated in combination with collagen and beta glycerophosphate, and key development issues such as injectability and sterilisation processes were examined. The polymer solution underwent thermogelation at ~36 °C as determined by rheological analysis, and when gelled, was sufficiently robust to resist significant disintegration in the presence of phosphate buffered saline (PBS) while concomitantly allowing for diffusion of methylene blue dye solution into the gel. We demonstrate that human mesenchymal stem cells (hMSCs) encapsulated within the gel remained viable and showed raised levels of dsDNA at increasing time points, an indication of cell proliferation. Mechanical testing showed the "injectability", i.e. force required for delivery of the polymer solution through devices such as a syringe, needle or catheter. Sterilisation of the freeze-dried polymer wafer via gamma irradiation showed no adverse effects on the formed hydrogel characteristics. Taken together, these results indicate the potential of this gel as a clinically translatable delivery system for stem cells and therapeutic molecules in vivo.

X Demographics

X Demographics

The data shown below were collected from the profiles of 10 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 59 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 59 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 10 17%
Student > Master 9 15%
Student > Bachelor 8 14%
Other 4 7%
Researcher 4 7%
Other 6 10%
Unknown 18 31%
Readers by discipline Count As %
Engineering 7 12%
Biochemistry, Genetics and Molecular Biology 5 8%
Pharmacology, Toxicology and Pharmaceutical Science 4 7%
Medicine and Dentistry 4 7%
Agricultural and Biological Sciences 4 7%
Other 11 19%
Unknown 24 41%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 8. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 25 April 2017.
All research outputs
#4,698,186
of 25,374,647 outputs
Outputs from Drug Delivery and Translational Research
#101
of 613 outputs
Outputs of similar age
#82,932
of 420,276 outputs
Outputs of similar age from Drug Delivery and Translational Research
#2
of 3 outputs
Altmetric has tracked 25,374,647 research outputs across all sources so far. Compared to these this one has done well and is in the 81st percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 613 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.8. This one has done well, scoring higher than 83% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 420,276 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 80% of its contemporaries.
We're also able to compare this research output to 3 others from the same source and published within six weeks on either side of this one.