↓ Skip to main content

Synthesis of indium nanoparticles at ambient temperature; simultaneous phase transfer and ripening

Overview of attention for article published in Journal of Nanoparticle Research, December 2016
Altmetric Badge

Mentioned by

facebook
1 Facebook page

Citations

dimensions_citation
8 Dimensions

Readers on

mendeley
23 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Synthesis of indium nanoparticles at ambient temperature; simultaneous phase transfer and ripening
Published in
Journal of Nanoparticle Research, December 2016
DOI 10.1007/s11051-016-3683-8
Pubmed ID
Authors

Mohammad Aghazadeh Meshgi, Manfred Kriechbaum, Subhajit Biswas, Justin D. Holmes, Christoph Marschner

Abstract

The synthesis of size-monodispersed indium nanoparticles via an innovative simultaneous phase transfer and ripening method is reported. The formation of nanoparticles occurs in a one-step process instead of well-known two-step phase transfer approaches. The synthesis involves the reduction of InCl3 with LiBH4 at ambient temperature and although the reduction occurs at room temperature, fine indium nanoparticles, with a mean diameter of 6.4 ± 0.4 nm, were obtained directly in non-polar n-dodecane. The direct synthesis of indium nanoparticles in n-dodecane facilitates their fast formation and enhances their size-monodispersity. In addition, the nanoparticles were highly stable for more than 2 months. The nanoparticles were characterised by dynamic light scattering (DLS), small angle X-ray scattering (SAXS), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDS) and Fourier transform infrared (FT-IR) spectroscopy to determine their morphology, structure and phase purity.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 23 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 23 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 4 17%
Student > Master 3 13%
Researcher 2 9%
Professor 2 9%
Student > Doctoral Student 1 4%
Other 3 13%
Unknown 8 35%
Readers by discipline Count As %
Chemistry 7 30%
Materials Science 5 22%
Engineering 1 4%
Unknown 10 43%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 15 December 2016.
All research outputs
#20,448,386
of 23,003,906 outputs
Outputs from Journal of Nanoparticle Research
#859
of 907 outputs
Outputs of similar age
#351,000
of 416,812 outputs
Outputs of similar age from Journal of Nanoparticle Research
#15
of 15 outputs
Altmetric has tracked 23,003,906 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 907 research outputs from this source. They receive a mean Attention Score of 4.6. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 416,812 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 15 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.