↓ Skip to main content

Wnt signaling and cellular metabolism in osteoblasts

Overview of attention for article published in Cellular and Molecular Life Sciences, November 2016
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
1 X user
f1000
1 research highlight platform

Citations

dimensions_citation
225 Dimensions

Readers on

mendeley
182 Mendeley
Title
Wnt signaling and cellular metabolism in osteoblasts
Published in
Cellular and Molecular Life Sciences, November 2016
DOI 10.1007/s00018-016-2425-5
Pubmed ID
Authors

Courtney M. Karner, Fanxin Long

Abstract

The adult human skeleton is a multifunctional organ undergoing continuous remodeling. Homeostasis of bone mass in a healthy adult requires an exquisite balance between bone resorption by osteoclasts and bone formation by osteoblasts; disturbance of such balance is the root cause for various bone disorders including osteoporosis. To develop effective and safe therapeutics to modulate bone formation, it is essential to elucidate the molecular mechanisms governing osteoblast differentiation and activity. Due to their specialized function in collagen synthesis and secretion, osteoblasts are expected to consume large amounts of nutrients. However, studies of bioenergetics and building blocks in osteoblasts have been lagging behind those of growth factors and transcription factors. Genetic studies in both humans and mice over the past 15 years have established Wnt signaling as a critical mechanism for stimulating osteoblast differentiation and activity. Importantly, recent studies have uncovered that Wnt signaling directly reprograms cellular metabolism by stimulating aerobic glycolysis, glutamine catabolism as well as fatty acid oxidation in osteoblast-lineage cells. Such findings therefore reveal an important regulatory axis between bone anabolic signals and cellular bioenergetics. A comprehensive understanding of osteoblast metabolism and its regulation is likely to reveal molecular targets for novel bone therapies.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 182 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 182 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 34 19%
Student > Bachelor 22 12%
Student > Master 18 10%
Student > Doctoral Student 16 9%
Researcher 12 7%
Other 19 10%
Unknown 61 34%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 34 19%
Medicine and Dentistry 33 18%
Agricultural and Biological Sciences 18 10%
Engineering 10 5%
Pharmacology, Toxicology and Pharmaceutical Science 6 3%
Other 14 8%
Unknown 67 37%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 16 May 2017.
All research outputs
#14,873,797
of 23,794,258 outputs
Outputs from Cellular and Molecular Life Sciences
#2,871
of 4,151 outputs
Outputs of similar age
#230,141
of 420,715 outputs
Outputs of similar age from Cellular and Molecular Life Sciences
#25
of 37 outputs
Altmetric has tracked 23,794,258 research outputs across all sources so far. This one is in the 35th percentile – i.e., 35% of other outputs scored the same or lower than it.
So far Altmetric has tracked 4,151 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.0. This one is in the 28th percentile – i.e., 28% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 420,715 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 42nd percentile – i.e., 42% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 37 others from the same source and published within six weeks on either side of this one. This one is in the 32nd percentile – i.e., 32% of its contemporaries scored the same or lower than it.