↓ Skip to main content

Ischemic Preconditioning Confers Epigenetic Repression of Mtor and Induction of Autophagy Through G9a‐Dependent H3K9 Dimethylation

Overview of attention for article published in Journal of the American Heart Association Cardiovascular and Cerebrovascular Disease, December 2016
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age

Mentioned by

twitter
2 X users

Citations

dimensions_citation
33 Dimensions

Readers on

mendeley
29 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Ischemic Preconditioning Confers Epigenetic Repression of Mtor and Induction of Autophagy Through G9a‐Dependent H3K9 Dimethylation
Published in
Journal of the American Heart Association Cardiovascular and Cerebrovascular Disease, December 2016
DOI 10.1161/jaha.116.004076
Pubmed ID
Authors

Olof Gidlöf, Andrea L. Johnstone, Kerstin Bader, Bohdan B. Khomtchouk, Jiaqi J. O'Reilly, Selvi Celik, Derek J. Van Booven, Claes Wahlestedt, Bernhard Metzler, David Erlinge

Abstract

Ischemic preconditioning (IPC) protects the heart from prolonged ischemic insult and reperfusion injury through a poorly understood mechanism. Post-translational modifications of histone residues can confer rapid and drastic switches in gene expression in response to various stimuli, including ischemia. The aim of this study was to investigate the effect of histone methylation in the response to cardiac ischemic preconditioning. We used cardiac biopsies from mice subjected to IPC to quantify global levels of 3 of the most well-studied histone methylation marks (H3K9me2, H3K27me3, and H3K4me3) with Western blot and found that H3K9me2 levels were significantly increased in the area at risk compared to remote myocardium. In order to assess which genes were affected by the increase in H3K9me2 levels, we performed ChIP-Seq and transcriptome profiling using microarray. Two hundred thirty-seven genes were both transcriptionally repressed and enriched in H3K9me2 in the area at risk of IPC mice. Of these, Mtor (Mechanistic target of rapamycin) was chosen for mechanistic studies. Knockdown of the major H3K9 methyltransferase G9a resulted in a significant decrease in H3K9me2 levels across Mtor, increased Mtor expression, as well as decreased autophagic activity in response to rapamycin and serum starvation. IPC confers an increase of H3K9me2 levels throughout the Mtor gene-a master regulator of cellular metabolism and a key player in the cardioprotective effect of IPC-leading to transcriptional repression via the methyltransferase G9a. The results of this study indicate that G9a has an important role in regulating cardiac autophagy and the cardioprotective effect of IPC.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 29 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 29 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 9 31%
Student > Ph. D. Student 5 17%
Professor 2 7%
Other 2 7%
Student > Doctoral Student 1 3%
Other 1 3%
Unknown 9 31%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 8 28%
Agricultural and Biological Sciences 4 14%
Medicine and Dentistry 4 14%
Neuroscience 2 7%
Pharmacology, Toxicology and Pharmaceutical Science 1 3%
Other 1 3%
Unknown 9 31%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 18 February 2020.
All research outputs
#16,048,318
of 25,377,790 outputs
Outputs from Journal of the American Heart Association Cardiovascular and Cerebrovascular Disease
#6,155
of 8,237 outputs
Outputs of similar age
#242,405
of 422,542 outputs
Outputs of similar age from Journal of the American Heart Association Cardiovascular and Cerebrovascular Disease
#91
of 121 outputs
Altmetric has tracked 25,377,790 research outputs across all sources so far. This one is in the 34th percentile – i.e., 34% of other outputs scored the same or lower than it.
So far Altmetric has tracked 8,237 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 31.6. This one is in the 22nd percentile – i.e., 22% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 422,542 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 40th percentile – i.e., 40% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 121 others from the same source and published within six weeks on either side of this one. This one is in the 23rd percentile – i.e., 23% of its contemporaries scored the same or lower than it.