↓ Skip to main content

Skeletal muscle ATP kinetics are impaired in frail mice

Overview of attention for article published in GeroScience, May 2013
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
3 X users

Citations

dimensions_citation
55 Dimensions

Readers on

mendeley
47 Mendeley
Title
Skeletal muscle ATP kinetics are impaired in frail mice
Published in
GeroScience, May 2013
DOI 10.1007/s11357-013-9540-0
Pubmed ID
Authors

Ashwin Akki, Huanle Yang, Ashish Gupta, Vadappuram P. Chacko, Toshiyuki Yano, Michelle K. Leppo, Charles Steenbergen, Jeremy Walston, Robert G. Weiss

Abstract

The interleukin-10 knockout mouse (IL10(tm/tm)) has been proposed as a model for human frailty, a geriatric syndrome characterized by skeletal muscle (SM) weakness, because it develops an age-related decline in SM strength compared to control (C57BL/6J) mice. Compromised energy metabolism and energy deprivation appear to play a central role in muscle weakness in metabolic myopathies and muscular dystrophies. Nonetheless, it is not known whether SM energy metabolism is altered in frailty. A combination of in vivo (31)P nuclear magnetic resonance experiments and biochemical assays was used to measure high-energy phosphate concentrations, the rate of ATP synthesis via creatine kinase (CK), the primary energy reserve reaction in SM, as well as the unidirectional rates of ATP synthesis from inorganic phosphate (Pi) in hind limb SM of 92-week-old control (n = 7) and IL10(tm/tm) (n = 6) mice. SM Phosphocreatine (20.2 ± 2.3 vs. 16.8 ± 2.3 μmol/g, control vs. IL10(tm/tm), p < 0.05), ATP flux via CK (5.0 ± 0.9 vs. 3.1 ± 1.1 μmol/g/s, p < 0.01), ATP synthesis from inorganic phosphate (Pi → ATP) (0.58 ± 0.3 vs. 0.26 ± 0.2 μmol/g/s, p < 0.05) and the free energy released from ATP hydrolysis (∆G ∼ATP) were significantly lower and [Pi] (2.8 ± 1.0 vs. 5.3 ± 2.0 μmol/g, control vs. IL10(tm/tm), p < 0.05) markedly higher in IL10(tm/tm) than in control mice. These observations demonstrate that, despite normal in vitro metabolic enzyme activities, in vivo SM ATP kinetics, high-energy phosphate levels and energy release from ATP hydrolysis are reduced and inorganic phosphate is elevated in a murine model of frailty. These observations do not prove, but are consistent with the premise, that energetic abnormalities may contribute metabolically to SM weakness in this geriatric syndrome.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 47 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United Kingdom 1 2%
Unknown 46 98%

Demographic breakdown

Readers by professional status Count As %
Researcher 11 23%
Student > Ph. D. Student 9 19%
Student > Master 5 11%
Student > Bachelor 4 9%
Other 3 6%
Other 5 11%
Unknown 10 21%
Readers by discipline Count As %
Medicine and Dentistry 10 21%
Biochemistry, Genetics and Molecular Biology 7 15%
Agricultural and Biological Sciences 7 15%
Engineering 3 6%
Immunology and Microbiology 1 2%
Other 3 6%
Unknown 16 34%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 27 May 2013.
All research outputs
#15,517,992
of 25,374,647 outputs
Outputs from GeroScience
#1,079
of 1,595 outputs
Outputs of similar age
#116,645
of 208,192 outputs
Outputs of similar age from GeroScience
#9
of 15 outputs
Altmetric has tracked 25,374,647 research outputs across all sources so far. This one is in the 37th percentile – i.e., 37% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,595 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 17.0. This one is in the 31st percentile – i.e., 31% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 208,192 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 43rd percentile – i.e., 43% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 15 others from the same source and published within six weeks on either side of this one. This one is in the 33rd percentile – i.e., 33% of its contemporaries scored the same or lower than it.