↓ Skip to main content

Effect of Exercise on Ovulation: A Systematic Review

Overview of attention for article published in Sports Medicine, December 2016
Altmetric Badge

About this Attention Score

  • In the top 5% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (97th percentile)
  • High Attention Score compared to outputs of the same age and source (82nd percentile)

Mentioned by

news
10 news outlets
blogs
1 blog
twitter
10 X users
facebook
5 Facebook pages

Citations

dimensions_citation
90 Dimensions

Readers on

mendeley
357 Mendeley
Title
Effect of Exercise on Ovulation: A Systematic Review
Published in
Sports Medicine, December 2016
DOI 10.1007/s40279-016-0669-8
Pubmed ID
Authors

Osnat Hakimi, Luiz-Claudio Cameron

Abstract

Infertility has been described as a devastating life crisis for couples, and has a particularly severe effect on women, in terms of anxiety and depression. Anovulation accounts for around 30% of female infertility, and while lifestyle factors such as physical activity are known to be important, the relationship between exercise and ovulation is multi-factorial and complex, and to date there are no clear recommendations concerning exercise regimes. The objective of this review was to systematically assess the effect of physical activity on ovulation and to discuss the possible mechanisms by which exercise acts to modulate ovulation in reproductive-age women. This was done with a view to improve existing guidelines for women wishing to conceive, as well as women suffering from anovulatory infertility. The published literature was searched up to April 2016 using the search terms ovulation, anovulatory, fertility, sport, physical activity and exercise. Both observational and interventional studies were considered, as well as studies that combined exercise with diet. Case studies and articles that did not report anovulation/ovulation or ovarian morphology as outcomes were excluded. Studies involving administered drugs in addition to exercise were excluded. In total, ten interventions and four observational cohort studies were deemed relevant. Cohort studies showed that there is an increased risk of anovulation in extremely heavy exercisers (>60 min/day), but vigorous exercise of 30-60 min/day was associated with reduced risk of anovulatory infertility. Ten interventions were identified, and of these three have studied the effect of vigorous exercise on ovulation in healthy, ovulating women, but only one showed a significant disruption of ovulation as a result. Seven studies have investigated the effect of exercise on overweight/obese women suffering from polycystic ovary syndrome (PCOS) or anovulatory infertility, showing that exercise, with or without diet, can lead to resumption of ovulation. The mechanism by which exercise affects ovulation is most probably via modulation of the hypothalamic-pituitary-gonadal (HPG) axis due to increased activity of the hypothalamic-pituitary-adrenal (HPA) axis. In heavy exercisers and/or underweight women, an energy drain, low leptin and fluctuating opioids caused by excess exercise have been implicated in HPA dysfunction. In overweight and obese women (with or without PCOS), exercise contributed to lower insulin and free androgen levels, leading to the restoration of HPA regulation of ovulation. Several clear gaps have been identified in the existing literature. Short-term studies of over-training have not always produced the disturbance to ovulation identified in the observational studies, bringing up the question of the roles of longer term training and chronic energy deficit. We believe this merits further investigation in specific cohorts, such as professional athletes. Another gap is the complete absence of exercise-based interventions in anovulatory women with a normal body mass index (BMI). The possibly unjustified focus on weight loss rather than the exercise programme means there is also a lack of studies comparing types of physical activity, intensity and settings. We believe that these gaps are delaying an efficient and effective use of exercise as a therapeutic modality to treat anovulatory infertility.

X Demographics

X Demographics

The data shown below were collected from the profiles of 10 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 357 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 357 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 42 12%
Student > Bachelor 39 11%
Student > Ph. D. Student 30 8%
Researcher 28 8%
Other 18 5%
Other 68 19%
Unknown 132 37%
Readers by discipline Count As %
Medicine and Dentistry 87 24%
Nursing and Health Professions 31 9%
Sports and Recreations 31 9%
Biochemistry, Genetics and Molecular Biology 22 6%
Psychology 11 3%
Other 37 10%
Unknown 138 39%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 96. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 07 January 2023.
All research outputs
#447,839
of 25,756,531 outputs
Outputs from Sports Medicine
#435
of 2,896 outputs
Outputs of similar age
#9,299
of 424,759 outputs
Outputs of similar age from Sports Medicine
#7
of 41 outputs
Altmetric has tracked 25,756,531 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 98th percentile: it's in the top 5% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 2,896 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 57.3. This one has done well, scoring higher than 84% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 424,759 tracked outputs that were published within six weeks on either side of this one in any source. This one has done particularly well, scoring higher than 97% of its contemporaries.
We're also able to compare this research output to 41 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 82% of its contemporaries.